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ABSTRACT 

A study was made of Dual Input Describing Functions (DIDF) for non- 
linear elements with a view toward the synthesis problem where the charac- 
teristics of the DIDF are specified a priori.   The study included a literature 
survey and an analytical investigation of the DIDF. 

Improved methods for calculating DIDF's were sought.   The problem of 
defining the DIDF in such a way that it is valid for multivalued nonlinear 
elements was also considered and one method of solution is proposed.   The 
effect oi changes in the secondary signal waveform on the DIDF for nonJinear 
elements was also investigated. 
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CHAPTER I 

INTRODUCTION 

A typical nonlinear element N, as encountered in automatic control 

applications, may be characterized mathematically as a nonlinear operator 

I 
which acts on a scalar input signal e and produces a scalar output signal 

y = N(e) where, in general, N(e) is a nonlinear function.  Inmar.y cases, N{e) is 

amultipleor even infinitely valued "function" and may possess a number of 

simple jump discontinuities.   Hereafter the function N(e) is referred to as the 

"characteristic" of the nonlinear element N. 

One method commonly used to analyze electrical networks and feedback 
j 

control systems containing such nonlinear elements is the Method of Describing 
i 

Functions (DF).   This method cousists of a linearizing process whereby the 

i 
nonlinear operator N(e) is replaced by a ^possibly complex) parameter 

dependent linear operator called the describing function.   The DF method 

originated in the sinusoidal analyses of feedback control systems containing 
I 
I 

nonlinear elements and was therefore originally developed only for sinusoidal 

inputs.   The DF for that case can be explained by Figure 1.1.    The constant 

(possibly complex) gain K(A) is chosen so that, the output Aj sin (ait + c^j) of 

the linearized representation is precisely equal to ihe fundamental component 

1 
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of the actual output y(t) of the nonlinear element, the latter being determined 

by an ordinary Fourier Series analysis of y(t).   The remainder, 

R(t) = A2 sin 2o}t + B2 cos 2cjt + .... of the actual output y{t) is, in effect, 

neglected. 

e = A sin cot 

y(t) = A. sin wt + B. cos cat 

+ A» sin 2cijt + B_ cos 2cot + ä_ sin Scot + . . . . 

(a) Actual Output of Nonlinear Element N 

A sin ut A. sin (cot + f,) = A. _.n wt + B. cos cot 

(b) Linearized Representation of Nonlinear Element N 

Figure 1.1.   Replacement of the Original Nonlinear Element N by Its DF K(A) 

Thus, the approximation of N by its DF is useful primarily in applica- 

tions where the signal y(t) subsequently passes through a filtering process 

such that the contribution of R(t) at the filter output is negligible.   Ir fact, it 

was situations of this type which prompted the original applications of the DF. 

As the filtering action more closely approximates that of a perfect low pass 

filter [low pass with respect to the fundamental frequency OJ of y(t) ], the DF 

approximation of N becomes more exact.   It is remarked that the ordinary DF 

analysis is valid only if the nonlinear element output y(t) has zero average 

value aad the fundamental component of y(t) has the same frequency co as 

\ 
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the input e(t) = A sin wt. 

The intuitive (original) approach to the DF analysis described above 

leads one to the following definition of the parameter dependent gain K(A) 

K(A) ^UJÄ A ,?    + tK 
R 

JKT (1.1) 

where K(A) is defined in complex variable notation (j = ^/^l).   The terms Aj 

and B, are the magnitudes of the fundamental in-phase and quadrature compo- 

nents of the output y(t). 

The DF described above can also be derived by means of ?, seemingly 

different approach to the problem.   In this approach the unwanted harmonics 

R(t) are minimized in the root-mean-squ«red (RMS) sense.   In other words, 

one seeks the function K(A) which gives the minimum RMS value of R(t) in 

Figure 1. 2. 

e - A sin cot K (A) A sin ut + R(t) 

Figure 1.2.   Actual Input and Output Signals of Nonlinear Element 
with Characteristic N(e) 

The RMS value of R(t) is given by 

R    = I—/  [N(Asina)t) - K A sin c<;t]2dwt[   2 

( l 27r - - I1/, 
j 2^/ [N(A sin wt) - K A sin wt - KA cos wt] ^wt [/; 

V      o ) 
(1.2) 
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It is not difficult to show that the minimum value of   R   results when 

K 
1     27r 

R      TTA 
sin a)t) sin wt dwt (1.3) 

i    27r 

K. - —— |   N(A sin a)t)cos wt dwt 
I      TTA - 

(1.4) 

The result [Equations (1.3) and (1.4) ] gives precisely the same DF 

previously described and illustrated in Figure 1.1.   However, the derivation 

of DF's by minimization of the RMS value of R(t) provides a convenient means 

for accommodating more general (non-sinusoidal) periodic inputs to N. 

The conventional Dual Input Describing Function (DIDF) is defined for 

an input e which is the sum of two (possibly independent) components e. where 

the e. are typically chosen as constant, sinusoidal, or random noise signals. 

In this case, a DIDF or "equivalent linear gain" can be defined for each input 

component e.(t).   Figure 1.3 illustrates how a nonlinear element with two sine 

wave input components can be replaced by two DIDF's. 

It is useful at this point to introduce, in a simplified way, the underlying 

principle of the DIDF for a nonlinear element with two independent input compo- 

nents.   A more complete mathematical description of the DIDF and one means 

of deriving it for deterministic input components is given in Chapter II. 

If the primary component of the input to the nonlinear element is denoted 

by el and the secondary input component is 03, the DIDF for the component ei 

is defined as the coefficient of the term ej in the output y(t), where y(t) is 

written in the form 

y(t)  = K^t)  + R(t) (1.5) 



A sin ut A, sin («t + f.) + B1 sin (ßt + yi) 

+ C. sin («t- ßt + X.) 

+ A2 sin (2wt ♦ f2) + B2 sin (2pt + yj) 

■   •   C   •  • c 

B sin ßt 

(a) Original Representation 

A1 sin (cot + ?T) + B1 sirt(pt + yi) 

(b) Equivalent Representation 

Figure 1.3.   Example Showing Nonlinear Element Replaced 
by Its DIDF 

and R(t) does not contain terms linear in e^t).   Since superposition does not 

hold, the presence of e2 has the effect of "altering" the value of Kj, which in 

turn is chosen so that R(t) is minimized in the RMS sense.   In general the out- 

put y(t) of the nonlinear element consists of terms involving e^, e^, and 

ej e?   where p and q are integers. 

The observation that the characteristic N(e) of a nonlinear element is, 

in effect, "altered" by addition of a secondary high frequency sinusoidal signal 

e2(t) to the primary component e^t) was observed some time ago.   In 1945 

McColl [1] noted the apparent linearizing effect of the "extra oscillation" on a 

relay control system.   He also mentioned the idea of replacing the original 

*&>»^^mtmmi&&mmmm&isfitimir:-::!, flMMHWHK&^aMfc^ü»! 



relay element with a new "effectively linear" element and, by so doing, avoid- 

ing all explicit mention of the extra oscillation.   McCoIl attributes this latter 

idea to Lozier [2],   These two ideas are the basic notions of the DIDF 

+echnique;  they actually had their beginning prior to any published work on the 

"single input" DF. 

Some of the earliest studies of describing function techniques were 

conducted independently by Goldfarb [3], Tustin f4], and Kochenburger f5). 

These early researchers were evidently inspired by the so-called method of 

"harmonic balance" developed somewhat earlier by Kryloff and Bogoliuboff [6]. 

The success and wide acceptance of both the DF and DIDF can be attributed to 

the good low pass filtering characteristics of most practical controlled plants. 

This is true even though the definition of both the DF and the DIDF depends only 

upon the nonlinear element and input signals. 

The use of a triangle wave secondary component e2(t) to provide 

"precisely linear" signal amplification, in the sense of the DIDF for carrier- 

controlled relay servos, was probably first proposed by Lozier [2].   The basic 

concepts involved in the DIDF for two sinusoidal components, where the ratio 

of frequencies is an irrational number, were clearly outlined by Lozier.  West, 

Douce, and Livesly [7] first introduced the term "Dual Input Describing Func- 

tion" and made a major contribution toward the development of practical com- 

putational procedures.   However, the DIDF of West et al. is valid only for two 

sinusoidal components where the frequency ratio of the two sinusoids is a 

rational number.   In practice this frequency ratio is usually taken as an integer 

or the reciprocal of an integer.   The DIDF of West et al. is very cumbersome 

~«»««i<j«llif«a«e,aiMjKt^ 
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because of the many parameters involved.   In a later study, Oldenbarger [8] 

noted the stabilizing effect brought about by the addition of a high frequency 

sinusoidal secondary signal into the nonlinear element input in certain unstable 

nonlinear feedback control systems.   SomnerviU' and Atherton [9] proposed 

a very appealing approximate method for calculating multiple input describing 

functions or equivalent gains K which are valid for several input components 

with different waveforms including dc, sinusoidal, and gaussian noise.   When 

the input consists of only two independent components, they propose and outline 

a method for obtaining the DIDF by a two-stage evaluation process in which the 

first step involves the calculation of an effective or modified nonlinear element. 

Oldenburger and Boyer [10] utilized a modified nonlinear element approach to 

derive many useful DIDF curves for the restricted case of two sinusoidal com- 

ponents where the frequency of the secondary component is high compared to 

the primary component.   The modified nonlinear element concept was later 

shown, by Gibson and Sridhar [11], to give exact answers (subject of course to 

the accuracy of computational methods and equipment) for two sine wave com- 

ponents where the frequency ratio is an irrational number.   The DIDF consid- 

ered by Gibson and Sridhar was derived using the theory of random functions 

and is valid only for single valued nonlinear elements.   Mu^h earlier, however, 

Bennett [12], and later Kalb and Bennett [13], used a double Fourier Series 

expansion of a nonlinear element output in analyzing modulation products. 

Later Amsler and Gorozdos [14] used the method of Bennett and Kalb in the 

analysis of bistable control systems and derived what was later called the 
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DDIF for a relay with two einusoidal input components with irrational fre- 

quency ratio. 

Other investigators such as Sridhar and Oldenburger [15] and 

Atherton and Turnbull [16] have proposed alternative approaches to the DIDF 

based upon statistical methods.   Gelb and Vander Velde [17] make use of a 

simpler dc equivalent gain as an approximation to the DIDF for two sinusoidal 

components in the analysis of limit cycling control systems.   In a recent book, 

Gelb and Vander Velde f 18] have applied the integral representation of non- 

linear elements used by Gibson and Sridhar to the calculation of a DIDF for 

two sinusoidal input components (two-sinusoid input describing function or 

TSIDF).   However, in their book Gelb and Vander Velde use purely determin- 

istic arguments rather than the theory of random functions.   In this same book 

Gelb and Vander Velde also disclose a very appealing power series TSIDF cal- 

culation for odd nonlinear elements with input sinusoids whose frequency ratio 

is irrational.   This power series of the TSIDF is easily generated from an 

algebraic form of the ordinary DF. 

All of the methods discussed above, with the exception of the DIDF of 

West, Douce, and Livesly [7] apply only to single valued nonlinear elements. 

Recently, Mahalanabis and Nath [19-21] have proposed a method of calculating 

the DIDF which, they assert, holds for multivalued nonlinear elements with 

multiple inputs.   However, Atherton [22] has subsequently pointed out that this 

proposed method is valid only when the nonlinear element may be described by 

the function f(e,e), where e is the input to the nonlinear element [23].   Often 

a function f(e,e), although incorrectly describing the characteristic of a given 



multivalued nonlinear element, may be successfully employed when the 

derivative of the input signal does not change signs within the hysteresis or 

multivalued region.   This condition cannot, in general, be guaranteed for two 

independent input components regardless of any stipulations on the amplitude of 

these signals.   Consequently, the method proposed by Mahalanabis and Nath 

is incorrect for two input components even when the restriction is added that 

the difference in amplitudes of th? two components must be greater than the 

hysteresis width.    For this reason, many subsequent articles [24-28] relating 

to such a method are incorrect.   Äiohan and Krishma [29] have correctly used 

this approach to find DIDF's for some multivalued nonlinear elements for which 

the function f(e,e) is an exact representation.   This rather special class of 

nonlinear elements excludes many of the important multivalued nonlinear ele- 

ments encountered in practice, however. 

Since frequencies and the frequency ratio of the two periodic components 

of the input to a nonlinear element are mentioned quite often in this report, 

standard symbols will be adopted for these terms.   Hereafter the frequency of 

the primary input component (usually a sine wave) will be defined as co and the 

fundamental frequency of the deterministic secondary input component will be 

defined as ß.   The term "frequency ratio" will refer to the ratio = ß/co. 

One may successfully apply the modified nonlinear element method of 

determining the D1DF for multivalued nonlinear elements when certain restric- 

tions are placed on the input components.   Atherton and Turnbull [16] have 

demonstrated that good approximate answers may be obtained when ß/w »  1 

or when/p/o; « 1.   The first case (j?/co »  1) requires only a straightforward 
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application of the method, whereas the latter case (/?/y «  1) requires a slight 

modification of the method as originally outlined by Sommerville and 

Atherton (9). 

Cook [30] has given the DIDF of some multivalued nonlinear elements 

for both sinusoidal and statistical secondary input components by using the 

modified nonlinear element method.   Cook considered only the more straight- 

forward application of the modified nonlinear element method where (?/w »  1. 

In another recent faper [31], Mahalanabis and O'denburger have 

proposed an approximate method of calculating the DIDF of a multivalued non- 

linear element by the use of statistical methods.   They assert that the fre- 

quency of the secondary signal component may be either higher or lower 

(^/OJ irrational) than that of the regular (primary) input component.   The 

latter statement conflicts with the findings of this study and will be discussed 

in more detail in Chapter 11, 

To the author's knowledge, the papers cited above include the major part of 

the published original work on the DIDF's of multivalued nonlinear elements.   Only 

Mahalanabis and Oldenburger [31 ] assert that their proposed DIDF applies gener- 

ally to multivalued nonlinear elements and their DIDF appears to be incorrect. Even 

the restrictive case where the nonlinear element input consists of two sinusoidal 

components with irrational frequency ratio jS/co has not been satisfactorily solved. 

Sc ne of the studies cited above were concerned with stability consid- 

erations and others were concerned with the signal transmission properties of 

nonlinear elements.   The primary concern of this study is the manner in which 

the effective nonlinear characteristic is altered in the presence of various 
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deterministic secondary signals.   The possibility of changing the apparent gain 

characteristics of a nonlinear element by injection of various "stabilizing" 

signal waveforms has been considered by other authors (16,32,331.   Also of 

concern is an effective method of deaing with multivalued nonlinear elements 

without the severe restrictions of the modified nonlinear element concept. 

Since it is known that the injection of secondary signals of different 

waveforms at the input of a nonlinear element results in different DIDF's, a 

related synthesis problem may be posed.   This synthesis problem is stated as 

follows:   Given a nonlinear element with characteristic Me), find a waveform 

(if one exists) of a periodic secondary input component e2(t) which will result 

in a specified DIDF.   With added qualifications, this problem will be defined as 

the inverse DIDF problem.   Gibson, Hill, Ibrahim, and di Tada [34] have 

proposed an inverse DF problem where it is desired to find the nonlinear 

characteristic which has a specified describing function.   Although the inverse 

DIDF problem is not a logical extension of the inverse DF problem defined by 

Gibson et al., it is perhaps a more practical one for the two-input component 

case.   It is with this inverse DIDF problem that part of this report is con- 

cerned.   An unsuccessful attempt was made to find a general solution to this 

problem.   As will be seen, specific classes of nonlinear elements lend them- 

selves to relatively simple solutions.   In the absence of a general approach to 
• 

the inverse DIDF problem, considerable use could be made of curves showing 

the DIDF's of the nonlinear element for several specific secondary signal wave- 

forms.   The derivation of a catalog of several such DIDF's and the development 
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of new and shorter methods for obtaining them comprises another contribution 

of this report.   The specific secondary signals considered arc the sine wave, 

triangle wave, and square wave. 

In summary, it is felt that this report makes some contribution in the 

following specific areas: 

a.    The historical aspects of the DIDF 

b-    The inverse DIDF problem 

c. A new method of obtaining the DIDF (The proposed method holds 

for a broad class of multivalued nonlinear elements and simplifies 

to a very compact form for single valued nonlinear 

elements with sinusoidal input comoonents.) 

d. Calculation of DIDF's for several specific secondary signals. 

12 



1.1 

CHAPTER II 

METHODS OF OBTAINING THE DIDF FOR DETERMINTSTiC INPUTS 

2.1       The DTDF of West, Douce, and Livesly 

The most general DIDF for the case in which the input to a single valued 

nonlinear element is the sum of two sine waves, e = A sin (cot + ^>) 

+ B sin (nwt + ip), is given by the expression 

1    27r 

K(A,B,n,<M)  = -T j NfAsin (cot + <p)  + B sin (nwt + !p)]sin (cot + <j))du)t. 

(2.1) 

Such a DIDF1 has five variables, A, B, n, <}>, and ip, and is there somewhat 

complicated to use in practical problems.   West. Douce, ^nd Livesly [7] 

developed a simplification of the DIDF given by Equation (2.1) by assuming the 

parameter n to be a rational number,   Tn fact the investigations of West et ai. 

led them to consider the even more restrictive casa where n is an integer or 

'Hereafter, the oi'der of the indicated parameters in the DIDF 
K{A,B,a,b,n, 0,...) has impUed meaning.   The first parameter A is the 
amplitude of the primary input signal for which the DIDF is derived.   The 
second, B, is the peak value of the secondary input Signa1-   Then follow the 
parameters a, b, c, etc., associated with the nonlinearity itself.   The fourth 
group (n, (p,ip,etc.) consists of the frequency ratio and phase angles associeted 
with the two input signals.   These comments also apply to the modified non- 
linearity N(A,B,a,b,c,n,, .ä) • 
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the reciprocal of an integer.   With this added restriction, the inclusion of two 

phase shift quantities 0 and i becomes redundant aud one of those parameters 

was eliminated.   In this way, the simplified DIDF of West, Douce, and Livesly 

was obtained in the form 

27r 
1      r 

K(A,B,n, ^)  = —   I   N[ A sin (wt + (p) + B sin nwt] sin (oot + 0)du)t , 
TTA -' 

(2.2) 

when N{e) is single valued.   The four parameters A, B, n, and 4> in the DIDF 

of West, Douce, and Livesly still require a very large amount of data to give a 

complete representation.   For this reason, and because of the restrictions on 

n, its use has been limited primarily to investigations of stability, subharmonic 

(superharmonic) oscillations, and jump phenomena  in nonlinear systems.   As 

pointed out by West et al., when N(e) is adequately described by a low order 

polynomial the DIDF is most easily found by a direct expansion to obtain the 

terms in the output with frequency co.   Of course, the direct expansion technique 

works equally well when the frequency ratios of the input sinusoidal components 

are irrational. 

2. 2       The Modified Nonlinear Element Concept 

The concept of the equivalent nonlinear element or the modified non- 

linear element probably originated with Nikiforuk and West [35].   However, 

their modified, normalized, input-output characteristic was defined only for a 

sinusoidal input when noise was added to this input.   Sommerville and 

Atherton [y] extended this concept to give a more meaningful "effective 

nonlinear element. "  This effective nonlinear element came about as a result 
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of the two-stage evaluation of the equivalent gain of a nonlinear element with 

respect to a primary signal in the presence of several other deterministic or 

random input components.   The restriction was imposed that the crop' correla- 

tion function of any two of the random input components must be zero and the 

frequency ratio for periodic input components must be irrational.   The process 

is shown diagramatically in Figure 2.1. 

INPUTS 

X 

N(e) 
Vo(x#y,r) 

R(x#y,i) 

I ^    i 
 1J2 
1 I   ? 
 K 

v
0 (x. y,») - 

K x + K y + K 1 x y x 

Figure 2.1.   Diagram Showing the Error Term R(x,y,z) 
and Equivalent Representation of a Three-Input 

Nonlinear Element Where R(xry,E) Is Neglected 
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In general, the spectrum of the output V (x,y,z) consists of the sum 

of all the frequencies contained in x, y, and z plus harmonics of these fre- 

quencies and frequencies resulting from various cross-products of x, y, and z. 

The equivalent gain K   is that value of K   (possibly complex) which gives a 

minimum value of R(x,y,z) in the RMS sense as K   is allowed to vary.   The 

other equivalent gains K   and K   are found independently in the same manner. 

Of course, if only the equivalent gain to one input component (primary input 

component) is desired, as is the case in this study, it is not necessary to cal- 

culate the equivalent gains for the secondary components.   When the primary 

input component x is a dc or sinusoidal signal it turns out that the required out- 

A 

put K x is simply the corresponding dc or fundamental Fourier periodic compo- 

nents of V  ;x,y,z) at the frequency of x.   Sommerville and Atherton [9] have 

A 

shown that precisely the same equivalent gain K   results 'vhen a two-stage 
x I f 

method of evaluation is used.   The intermediate step is to define an effective 

nonliner element (modified nonlinear element) by considering a dc signal A 
I 

instead of the primary signal x together with the other input components.   The 
i 
s 

function N /A 'j relating the average dc output as a function of A   is defined as 

the new effective nonlinear element.   If the primary input component x is then 

A A 

applied to the new effective nonlinear element N, the signal K x will appear at 
x 

the output.   This concept of the modified nonlinear element gives the engineer a 
f 

very helpful physical insight into the mechanism of "signai stabilization" or 

equivalent linearization via high frequency signal injection [33],   When the 

A 

number of inputs is reduced to two, the equivalent gains K are called DIDF's. 

As mentioned earlier, when the input consists of a sum of sinusoidal 

16 

\ 



components, an equivalent gain or DEDF may be defined with respect to each 

component in the input.   If there are only two components, boch of which are 

sinusoidal, then the resulting equivalent gains have been called [36] TSIDF's. 

Although the equivalent gains of Sommerville and Atherton were defined and 

formulated to include stochastic components in the input signals, fbeir formu- 

lation, as cited in this report, will be restricted to inputs in which the secon- 

dary components are deterministic periodic signals.   Gelb and Vander 

Velde 136] have discussed such a formulation for the ^SIDF.   Suppose the two 

sinusoidal components of the input are given by B sin ßt and A sin wt, where 

ß/ot) is an irrational number.   Then the equivalent gain or TSIDF with respect 

to the component A sin wt becomes 

K 
j      27r 27r 

(A,B)  = —j- f sin ojt dwt J N(A sin cot + B sin ßt)dßt    . (2.3) 

A similar expression defines K(B,A) with respect, to the component 

B sin ßt.   It should be pointed out that Equation (2.3) holds only for odd, 

single valued, nonlinear elements.   As remarked earlier, the derivation of 

K(A,B) may be carried out in a two-stage process by first defining a modified 

nonlinear element N[A  ,Bj for the case in which the input consists of the sum 

of a dc signal A   and a sinusoid B sin ßt.   The characteristic function of the 

modified nonlinear element then becomes 

N(AO.B) 
1   2-n 

— / N^Ao + Bsin/?tWt    , 
o       ^ ' 

and the TSIDF is given by 

(2.4) 
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27r 

K(A,B)  =—r f N(A sin u)t, B) sin tot dcjt (2.5) 

This same two-stage process will be used in this thesis except that the 

secondary signal is not restricted to be sinusoidal.   Oldenburger and 

Boyer [10] have outlined a semi-intuitive procedure for calculating the 

TSIDF which closely parallels the modified nonlinear element method proposed 

by Sommerville and Atherton.   In the outline of their method, Oldenburger and 

Boyer emphasize the concepts which underlie the experimental measurement 

of the modified nonlinear element and the TSIDF. 

The double Fourier Series expansion method given by Gelb and 

Vander Velde [18] and credited to Bennett [12] was mentioned in Chapter I. 

The TSIDF expression given by this method is exactly that of Equation (2.3) 

which results from the modified nonlinear element method and will not be 

discussed further. 

The modified nonlinear element method given by Equations (2.3), 

(2.4), and (2.5) will be derived in section 2.6 of this chapter by an approach 

which differs from the random noise approach used by Sommerville and 

Atherton [9] or the intuitive approach used by Oldenburger and Boyer  [10]. 

2.3       Power Series Method (TSIDF) 

The power series method of obtaining the TSIDF mentioned in 

Chapter I is valid for odd nonlinear elements when the frequency ratio of the 

input components is irrational.   This method is the result of expanding 

K(A,B) in a Taylor series about B = 0.   Gelb and Vander Velde [18] have 
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i 

shown that, provided ihe accessary derivatives exist, the TS1DF may be 

written as 

00 2p 
K(A,B)  = I 5- V  (A)   ;     A >   B    , (2.6) 

p=0  (2)'"P(p:)1     P 

where V  (A) is found bv the recursive equation 
P 

d2V  (A) dV  (A) 
V       (A)   =_^_P   -4^v      ' i2-7) 

P+l ^2 A      dA | 

with the first term being. 

V  (A)  = K(A) (2.8) 

the ordinary ÜF.    Likewise, 

P            A2p 

K(A,B)   =    Tj —  VV  (E)    ;     A<   B    , (2.9) 
p=0 2"pp'. (p +  1)    P 

where 

d2W (B) dW (B) 

with the first term being found by the relation 

Wo(B)  = K(B)  + | ä|p     . (2.!!) 

The function K(B) is the ordinary DF, when B sin ßt is the input sinusoid.   The 

power series method is easy to apply and is very useful when closed form 

solutions for the TSIDF cannot be found. 

Many authors [9,11,15,16,20,22,24,27,28,29,31,37] have used the 
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mathematics of random functions to formulate and derive equivalent gains and 

DIDF's.   Some of these studies differ in the method of approach but all involve 

the same fundamental ideas.   Gibson and Sridhar [11] used this approach to 

derive an exact DIDF for single valued nonlinear elements with an input con- 

sisting of two sine wave components (TSIDF).   Mahalarabis and Nath [37] 

proposed a more direct approach to calculating the TSIDF via the techniques 

of random process theory. 

The TSIDF for single valued nonlinear elements was shown by Gibson 

and Sridhar [11] and Gelb and Vander Velde [18] to bt 

K(A,E) =-^/y(ju)J0(Bu)J,(Au)du    , (2.12) 
_oo 

where 

y(ju)  = /   y(x) exp[-jux]dx (2.13) 

is the Fourier Integral Transform of the nonlinear element output y(x) with x 

as the input.   The functions J0(Ba) and Ji(Au) are Bessel functions of order 

zero  and one respectively. 

2.5       Methods of Determining the DIDF for Multivalued 
Nonlinear Elements 
  

As already discussed in Chapter I, relatively few results have beer; 

published on effective methods of obtaining the minimum RMS error DIDF for 

multivalued nonlinear elements.   One possible exception is the application 

[16,30,33] of the modified nonlinear element concept, which theoretically 

applies [16] to the multivalued nonlinear element case only as n or 1/n 
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approaches infinity.   It is plausible that the DIDF obtained by this approach is 

accurate enough for practical purposes when 1  « n « «^.   However, to the 

author's knowledge, no previously published work has dealt with the 

inaccuracies involved in this finite case (1 « n « "o) or with the question 

of possible ranges of finite n for which the method is accurate enough for 

practical purposes.   In respect to the application of the modified nonlinear 

element method to multivalued nonlinear elements, Cook [30] has suggested a 

method of keeping track of the phase.   A new approach to the question of find- 

ing the DIDF for multivalued nonlinear elements is offered in the foilowir"- 

section.   This approach may be useful in determining the exact DIDF for 

multivalued nonlinear elements with deterministic inputs. 

2.6       A New Average DIDF Method for Deterministic Inputs 

Consider the general TSIDF given by Equation (2,1) and let n be 

restricted to be an irrational number.   This is the case considered [9,10,11, 

16,25,26,27,31,32,33,36,37] where the random input approach was used to 

derive the TSIDF for deterministic inputs.   In such applications, the random 

input approach merely provides a convenient method for averaging out the 

relative phase angles (p and d.   This is easily understood when one considers 

the very practical problem of trying to experimentally determine the TSIDF. 

When n is irrational, the phase angles 0 and i lose their physical importance 

and it becomes impractical to even include them in the TSIDF.   Consider the 

accurate experimental setup to measure the TSIDF given by Equation (2.1). 

It is obvious that if the two signal generators which generate the components 
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A sin (cjt +  <p) and B(nu}t + $) are allowed to run continuously, a different 

value of K will be observed with each succeeding 2T: interval of the primary 

input component A sin (cot + 0).   What is actually desired is the average value 

of K as the observation time increases without bound.    Therefore, this 

"average TSIDF:' will not include ö and ii as parameters.   In other words, the 

actual TSIDF which is desired is given by 

KrA,B,n)  = 
um _j_ 2rN 

p—■00 PTTA   J 
(A sin wt •*   B sin nu;t)sin wt da;t    (2.14) 

where p is an integer. 

Equation (2,14) is equivalent, in the measurement problem, to 

evaluating 

I2; 
K(A,B,n,ö,^)  =— I N[A sin (yt + ii)   t-  B sin (nwt +  6) ]sin (ut + <!)dcot 

TT   J 

(2.15) 
o 

for all possible combinations of "phase" or zero crossings of the two input 

components and averaging these values of K (A, B, n, $, i). 

Thus, there is another way to calculate the TSIDF.   Let one of the 

sinusoidal input components contain a relative phase angle 0, then average the 

resulting set of "instantaneous DIDF's" as & ranges over 2TT.   The above 

arguments are more rigorously developed in the ensuing discussion.   Define 

an equivalent gain gain K    and K    for each input component A sin cot and 

B sin (nut + 0) respectively.   The "linearized" output is given by the 

expression K    A sin cot + K    B sin (ncot + <£).   However, K    and K    are 
AB AB 

complex functions of A, B, and n, in general, and can therefore be expressed 

in the form 
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r 

K     = K      + jK  . 
A        ar ai 

KB = V T jKbi (2.16) 

The RMS value of the difference between the actual output and the linearized 

output over all time is 

R - 
/ Urn      1 

I' 
27rp 

.=c     9] 
— j     (N[A sin wt + B sin (noot +  0) ] 

K     A sin at - K . A cos ut 
ar ai 

KL   B sin (nart + A) 
br 

K     B cos (n^t + (f)))2da;t|   2    , (2.17) 

where p is an integer.   Since n is restricted to be an irrational number, 

Equation (2.17) may be written in the following double integral form, 

/ j    j  27r       27r 

R = ( — r- f dtf) f (N[A sin wt + B sin (n^t + 0) j 
\ o        o 

K     A sin at - K . A c-os 
ar ai 

K,    B sin (nwt +   0) 
br 

- X    B cos (nojt + 0) rdwtj   2 (2.18) 

The i'alue of the real part of K    (minimum RMS TSIDF) which minimizes R is 

characterized by the condition 

an 
OK 

(2.19) 
ar 
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The indicated differentiation may be taken under the integral signs since the 

integrand is single valued, continuous, and differentiable with respect to the 

variable K     even though N(e) may be discontinuous and multivalued.   This 

value of K    , defined as K    , is found to be 
ar ar 

1     27r      2TT 

K    (A,B,n)  = " 2A   f d^ / N[A sin wt + B sin (nwt + (i>) ] sin wt dwt 
ST Air A   J J ar 

o        o 
(2.20) 

Likewise the imaginary part of the DIDF is found to be 

1     27r       2" 
K .(A,B,n)  = " 2A   / dcj)  /NfA sin cut + B sin (nojt + (i)) ]cos wt dwt   . 

ai 27r A ^ 
o        o 

(2.21) 

The independent nature of the two input components (n-irrational) is empha- 

sized by changing the variables cot and nü;t to öj and Ö2, respectively. 

If N (e) is now restricted to be single valued, the imaginary part K . 
3.1 

ar 
of the TSIDF goes to zero and O-i does not appear in the answer for X 

Therefore, Equation (2.20) may be reduced to the following form 

1      27r      2T. 

K   (A,B)  = TT7 / d(/) / N(A sin Ö, + B sin 0)sin Qx döj   . (2.22) 
o        0 

The role of 0 and fo may also b6 interchanged to give a similar expression for 

the DIDF, 

!     27r       27r 
K   {A,B)  = —"2—J dÖ2 / N(A sin 0! + B sin 62)sin flj dgj   .(2.23) 

o o 

Since the integrand is single valued with at most a finite number of finite 

discontinuities, the order of integration may be interchanged.   That is, 

Equation (2.23) may be written as 
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' 

1    27r 27r 

K   (A.B)  = —17 /sin öj döj / N(A sin Ö, + B sin Ö2)dÖ2   . {2.24; 

: 

Equation (2.24) is equivalent to (2.3) which in turn is a result of the modified 

nonlinear element method.   Equation (2.24) is also the form of the TSIDF 

given by Gelb and Vander Velde [36].   The two-step evaluation of Equation 

(2.24) may be carried out as indicated in Equations (2.4) and (2.5). 

Although the order of integration is not important, the integral forms resulting 

from Equation (2.23) may be easier to integrate than.those of Equation (2.24), 

or vice versa. 

Although the minimum RMS TSIDF was derived above under the 

assumption that the secondary component in the input was a sine wave, 

B sin (no/t + <p), this restriction is not necessary.   In fact, any periodic 

secondary signal a ißt) could have been chosen without affecting the form of 

the answer.   This result will be used in Chapter V to show how the DIDF is 

affected by changing the wave shape of the periodic signal crißt).   Equations 

(2.22) through (2.24) also emphasize that the TSIDF of single valued non- 

linear elements is independent of the frequency ratio n.   It appears that such 

a simplification cannot be made when considering multivalued nonlinear 

elements.   This latter statement is not in agreement with the assertion 

recently made by Mahalanabis and Oldenburger [31].   Further discussion of 

this point is made in Chapter IV where the DIDF for the relay with hysteresis 

is found by use of Equations (2.20) and (2.21) and is compared with the 

published results of Mahalanabis and Oldenburger, 
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Since the frequency ratio n dees not enter into the TSIDF for single 

valued nonlinear elements, Equation (2.20) suggests an alternative approach to 

the calculation of the TSIDF.   For instance, when n is very close to one, the 

DIDF may be written in the form 

j      2TT      2-n 
K(A,B) =—j—J d* /  N[Dsin(ü)t+ ^) ]sin wt da>t    ,  (2.25) 

27r'A 
o o 

where 

sm Y 

D = D(A,B,^)  = N/A
2
 +  B2 + 2AB cos 0 (2.26) 

B sin 0 
r- ;      B cos 0 + A 2- 0 

^ = 
WA( + B' + 2AB cos 0 

(2.27) 

TT - sin ■i/ B si 

\^yA2  +   B2  + 

sin (p 
\;      B cos 0 + A  £ 0    . 

2AB coo 0/ \ / 

Now eraluate K(A,B) by a two-stage process, similar to that used in the 

modified nonlinear element concept, where 

g(A,B,4>) 
1   P 

N[D sin (wt + if) ]sin ut dcot (2.28) 

and 

1  27r 

K(A.B)  =—-/g(A,B,0)d0 (2.29) 

The function g(A, B, 0) simply defines a special case of the DIDF of 

West, Douce, and Livesly where n = 1.   Equation (2.29) shows that K(A,B) is 

the average of g(A,B, 0) as 0 ranges over 27r.   This implies that the average 

value of the DIDF of West, Douce, and Livesly as 0 ranges over (0, 27r) is the 

same regardless of the value of n.   The function g(A, B, 0) has the appearance 

26 



I 

i 

I 
I 

of the conventional DF with the additional parameter 3.   It will be shown oelow 

that the computation oi g(A;B, 0) requires the same effort as ehe computation 

of the DF.   It may be considerably more difficult to perform the integration 

indicated in Equation (2.29) than that in Equation (2.28).   Since the charac- 

teristic i-.T(e) is single valued, the phase </ is preserved through the nonlinear 

operation indicated in Equation (2.28).   Therefore, Equation (2.28) maybe 

rewritten as 

g{A,B,0) 
cos v 

rA 

2- 
j N(D sin itjt) sin cot doit (2.30) 

Substituting Equation (2.27) in Equation (2.30) gives 

27r 

g(A,B,0) 
A + B cos 0 

N/A
2
 + B2 + 2AB cos <p ^ 

j N (D sin wt) sin wt dcot 

(2.31) 

and 

* J_ r
27r     (1 + B/A cos (t>)d<p 

2r 
o    '/A^+ B2 + 2AB cos * 

2- 
/ N(v A2 + B2 + 2AB cos $ •   sin wt) sin wt dwt    . (2.32) 

It is interesting to note that this formulation leads to a general expression, 

Equation (2.32), which has the appearance of an elliptic integral.   However, it 

appears that this integral may be difficult or impossible to reduce to one of the 

standard or tabulated elliptic integrals.   The functional cos [^(A.B,^) ] does 

not depend upon the nonlinear element and is symmetrical about 0 = TT.   In fact 

g(A,B,0) is symmetrical about ^ = TT as well.   In some cases approximate 

algebraic solutions may be desired rather than graphs of the TSIDF.   If 
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trapezoidal integration or other approximate techniques are used, accuracy 

sufficient for practical application is usually achievable with very few terms. 

In the. modified nonlinear element method, the function N |A , B j is 

oridinarly not difficult to obtain.   The main task consists of determining the 

fundamental component of the output when the primary component of the input 

is operated upon by the function N (A , B j. 

Example:   DIDF of Relay 

In order to demonstrate the utility of the average DIDF method, con- 

sider the DIDF of the perfect relay.   The relay is described by the equation: 
i 

y = Msg„,e)=[_«:    ^°    ^ (2.33, | 

where, for the present case, e = A sin wt + B sin ßt.   Equation (2.30) is 

i 
simply the conventional DF times cos ip with D sin cat as the input.   Thus, 

1    P 4M DF = —-     M sgn(D sin wt)sin wt dcot = —— (2.34) 
TTA 

J TTA 
0 

and 

,,   T, ^      4M /       1 + B/A cos (^        \ g(A,B,^)  = ( )   • (2.35) 
^   \N/A

2
 + B2 + 2ABcos (p / 

The second integration indicated by Equation (2.29) gives 

KrA.B^^-/—1 + B/AC0S^ —dd>    . (2.36) ^ 
n   o \/A

2
 + B2 + 2ABCOS0 
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This integral may be evaluated [38]. 

k2 - 2' ^■*'^4-B[H%>w-iiH , (2.37) 

where F(k) is the complete elliptic integral of the first kind and E(k) is the 

complete elliptic integral of the second kind.   The modulus k is given by 

2dWk 
k = 

1 + B/A    " 
(2.38) 

Equation (2.37) is valid for all A and B.   However, a modulus transformation 

may be applied [39] whereby 

2E(k)   -  (1 - k2)F(k) 
E(k) 

1  ^ k 

F(k)  =  (1 + k)F(k) 

(2.39) 

(2.40) 

when 

k = B/A   ;        B  < A 

k - A/B   :        B > A    . (2.41) 

When Equations (2.38) through (2.41) are substituted in Equation (2.37), the 

following expressions for the DIDF of the perfect relay results: 

^f" E(B/A) ;      B < A 

K(A,B) 
8M JB 
7r2A A 

E (A/B)   -   (l - ^2-)K(A/B) ;     A < B   .(2.42) 

Equation (2.42) coincides exactly with the expressions obtained by Gibson and 

Sridhar [11] and Mahalanabis and Nath [37], who used essentially different 

methods of calculations. 

vVhen the secondary input component is nonsinusoidal, a simplified form of 

the average DIDF method comparable to that given in Equation (2.32) cannot be 
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found.   However, either of the expressions given in Equations ^2.23) and 

(2.24) may be used when N(e) is single valued.    Expressions similar to 

Equations (2.20) and (2.21) are used whenN(e) is a multivalued function.   In 

order to include a more general periodic secondary signal (rißt), Equation 

(2.23) can be written as follows: 

K1A: c ■ ,)]  = —5— [ dn2   fNfA sin 0. -  a(Ö2) ]sin 0, do,   . (2.43) 
o Ü 

The evaluation of Equation ^2.43) may be carried out in two steps, following 

the modified nonlinear element approach, to give 

2r 
N^o;a(92)J   =J-/N[AO + a(ß2)jd^ (2.44) 

27- 

K[A;CT(0O)]  =-— f N[A Sin OJ ;   o-(02)]dß1 -A 
(2.45) 
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CHAPTER IE 

DEFINITION AND SOLUTION OF AN INVERSE DIDF PROBLEM 
FOR A PARTICULAR CLASS OF NONLINEAR ELEMENTS 

- 

- 

; 

\ 

Although a large portion of this report is devoted to the analysis of the 

output of a nonlinear element when the input contains a secondary signal of 

various waveforms, the motivation for this study was provided by the somewhat 

more difficult synthesis problem of finding the secondary signal ü{ßV\ which will 

produce a prescribed modified noruinear function N{A,B) for a given nonlinear 

function N(e).   It is assumed that the given nonlinear element is an inherent 

part of a system and cannot itself be changed or replaced.   Perhaps the first 

logical step in a synthesis procedure is to define the desired DIDF 

K = KfA: aißi) ] where the primary component of the input signal is a sine 

wave.   If one then attempts to work backward, using the modified nonlinear 

element concept, the second step consists of finding the equivalent nonlinear 

element N = NIA ; o-(ßt)"]  which gives the desired DIDF.   This, or course, 

is exactly analogous to the inverse describing function problem posed and 

largely solved by Gibson, Hill, Ibrahim, and di Tada [34].   Even though a 

method exists which may be used to solve this second step, one might proceed 

alternatively by first defining the desired N|A ; cr(7?t) j rather than the desired 
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K[ A; a ißt) j.   This latter problem is important in its own right and, in most 

practical situations, might just as well be the starting point.   A logical 

extension of the ideas of the inverse DF problem mentioned above would lead 

one to define the inverse DIDF problem as one of finding a nonlinear element 

which conesponds to a given TSIDF.   However, it is felt that the inverse 

DIDF definition given here is probably a more practical one.   The inverse 

DIDF problem to be considered here may be precisely stated as follows: 

The Inverse DIDF Problem 

Given:   A time invariant nonlinear element with characteristic 

N(e) and the desired modified nonlinear characteristic 

N* = N[A  ; a{ßt)\ 

Find:   The periodic secondary signal a* (ßt) which will produce 

the modified nonlinear characteristic N*. 

The diagram of Figure 3.1 shows the essential elements and signals required 

in the development. 

In the present discussion, only odd, single valued nonlinear elements 

whose characteristic is not a function of frequency will be considered.   In 

order to conveniently choose and restrict the class of secondary signals which 

should be considered, the following observation on integrals of functions is 

made:   Let f(t) be a given function of time, A   be an arbitrary constant, and 

N(e) be a time invariant single valued nonlinear function.   In addition, let 

j N[A    + f(t)l dt - X < (3-1) 
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EXISTING NOHLINEARITY 

a*(pt) 

■~T. 

\     e     , 

N(e yy^ 
TO LOW.PASS 

FILTER 
/ 

y 
e 

(a) Exact Representation 

DESIRED MODIFIED 
NONLINEAR ELEMENT 

N* ' S 
A / 

0 /       . 
/ A 

/ 

e 

(b) Equivalent Representation 

Figure 3.1.   Diagram Illustrating the Inverse DIDF Problem 

Then there exists a function g(t) such that 

dg(t) 
dt 

ä 0 0 < t < t (3.2) 

and 

/ NJX    + g{t)1dt = X (3.3) 

Therefore, following the definition of the modified nonlinear element given by 

Equation (2.44) , one may consider only secondary components cr(i3t) belonging 

to the class Z where 
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a(ßt)  = -vi-ßt) 

T.:    a(7r/2 +   t) = tr(ir/2 - ßt) 

derißt) 
dt 

0   ;        0 ^ ßt ^ ir/2 

This restriction does not eliminate from consideration any modified charac- 

teristic function NlA ; cT(/3t)    which mif^ht otherwise be considered. 

The restriction to the class Z greatly simplifies the search for a solu- 

tion a* (ßt) and does not eliminate any useful solutions.   It is obvious that a 

secondary signal can alter the modified nonlinear characteristic only over 

certain regions.   Such a region in the N FA ;(T(/?t)|  versus A   plane might be 

as shown in Figure 3.2.   In addition there will be limits on the derivatives of 

N in this region R.   That is, the values of the derivatives 
dmN 

dA 
m 

arbitrarily specified.   To define the region R and the limits on the derivatives 

,m A 

d   N 

dA 
m which may be achieved by a secondary component in the input is a large 

task.   However, with the exception of specifying the region R a priori, this is 

what is required in the inverse DIDF problem.   Curves showing the DIDF's of 

nonlinear elements for several specific secondary signal waveforms should 

lend some insight into what may be expected from the inverse problem.   A 

catalog of several such DIDF's is given in Chapter IV. 

Consider the class of nonlinear elements defined by the equation 

N(e)  = Kein sgn (e) (3.5) 

where m is a non-negative even integer.    Let the class of desired equivalent 

nonlinear elements, N* , be defined by the relation 
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Figure 3.2.   Region over Which NJA ; er(/?t)l 

May Be Varied by Changing erf/3t) 

% 
N* =  NFA ;(T*(/?t)1 - k,  A n   sgn (A ) 

L   O J o \   0/ 
(3.6) 

This equation holds for some as yet undefined region about the origin A    =0. 

The equation for the equivalent nonlinear element with any secondary signal and 

a single valued nonlinear element is given by the functional 

Nta; (7(^)1 =-^iAk
0 

+ o(/St)1d/?t    . (3.7) 
o 

The class of problems under consideration can be solved with some degree of 

success in a very straightforward manner by defining only the m     derivative 

of N* .   Of the nonlinear elements described by Equation (3.5), only the 

perfect relay and absquare will be considered.   However, the method proposed 

here may be carried further witnout defining the nonlinear element to be con- 

sidered.   Substitution of Equation (3.5) into (3.7) results in the following 

desired modified nonlinear element: 

2TT 

Np^; tr*0?t)"j  =-_-J 1"^ + a*(/?t)l msgn U    + tr* (/?t)l d/5t   .(3.8) 

I 

' 
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It is necessary to separate the integral of Equation (3. 8) into two 

integrals, where the limits then involve flj (Figure .^.3), in order to perform 

the integration.   By use of Leibnitz rule for integrals, it may be shown that 

th 
the m    and next lower order derivatives of N* are given by 

^m^^ i  27r d   N *      m 1 

dA 
m = ^-/Ksgn[Ao + a*(W] dßt (3.9) 

and 

,m-l 
d N* _   {m - 1)\   f jr 

dAm 

o 

Y =       2~        J K|AO + c7*'/3t)jsgnrAo + a(i?t)1d/?t .   (3. 10) 

In addition, the desired expressions for these derivatives are as follows: 

m 
n(n - l)(n - 2) ...  (n - m + l)ki:A   ,n'msgn (A \    (3.11) 

dA 
m 

o 

 — = n(n - 1) (n - 2)  ... (n - m + 2)k, IA   \n~m    i 
m-1 '    o 

dA 
(3.12) 

where C, is a constant.   Equation (3.9) may be solved in terms of the angle 01 

as defined in Figure 3.3.   When a(ßt) is assumed to belong to the class of 

signals defined by Equation (3.4) , the angle Sj may be found from the equation 

(Tie,) =  A     ;        A    <  B    . (3.13) 
oo 

Therefore, the solution of Equation (3.9) in terms of 01 is 

,m 
d   N: 

drt 
m 

m: 
2K0 

(3.14) 
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Figure 3.3.   The Composite Signal a(i3t)  +A 

1 

Equating the right-hand side of Equations (3.11) and (3.14) gives 

, f 2K0J \ inl^__;= n(n l)(n - 2) ...  (n - m + 1)^^  !n~msgn 
(Ao) 

(3.15) 

However, in an equation which involves both A   and f)1, one may sub- 

stitute the relation given by Equation (3.13).   Thus 

ml p   ,        ,n-m 
la-iOi) I        sgn Iv (61)] 

n(n - 1) (n - 2) ...  (n - m+ 1)   k t  W2) 
(3.16) 

When 0 :£ /?t £ 7r/2, Equation (3.16) may be rewritten more generally with 

ßt as the independent variable to give 

I a* (St) 
^-m 

n(n - 1)(n - 2) . ..  (n - m + 
_  K   /HA    . 
1)   kj  W2J    ' 

(3.17) 

0 £ /3t £ 7r/2    . 

Of course, only the highest nonzero derivative of N* has been specified and 

there is no guarantee that the signal given by Equation (3.17) will result in 

the desired lower order derivatives. 

37 



It is evident from Equations (3.9) and (3.14) thai 

dnV 

dA 
m 

2 0 (3.13) 

The latter relation, in conjunction with Equation (3.11), requires that 

n a m - 1    , (3.19) 

except when m = 0.   Therefore, the order of the equation describing the modi- 

fied nonlinear element cannot be made lever than m - 1.   However, the order 

of the equation describing N A ; cr(/5t)    may be larger than m.   Equation (3.10) 

describes the average output of an absolute value circuit and is always positive 

when A   and cr(/?t) are not identically zero.   Thus, the constant of Equation 

(3,12) is nonzero except possibly when n = m - 1.   The proposed method is 

further illustrated by the following examples: 

Example 1 (Perfect Relay) 

In this case, m = 0 and only the 0    derivative of N is required to find 

the secondary signal.   From Equation (3.17) the required secondary signal is 

cr*0St) 
K\ / i3t 

0 <   /?t <   7r/2    . (3.20) 

When n = 1, that is when the relay is "linearized," the signal a* (ßt) is a 

triangle wave.    The range over which Equation (3.2) holds is limited by the 

amplitude B* of the secondary signal.   The amplitude B* for the relay case is 

readily seen from Equation (3.20) to be 

] 

B* (f)"- (3.21) 
■.:V 
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The two degenerate cases where n 
0 and kj = 0 must be considered 

separately.   When n = 0, N* = k, sgn/A j, which describes the original 

nonlinear element and a(ßt)  = 0 is the only correct solution.   If it is desi 

to make k, = 0, Equation (3.20) leads to a wave with infinite height.   However, 

by referring to Equation (3.15) one obtains the relation 

ired 

2K0 
i = k, ^ 0 A    < B* (3.22) 

The last equation implies that 0] = 0 for 

a* (ßt) satisfying this equation 

nonzero values of A .   One signal 

is a symmetric square wave of arbitrary 

amplitude B* .   The resulting N is, of course, a relay with dead band width 

dN* 2B* [16].   Notice that a negative n implies a negative -JT—.   Solving Equation 
QA 

o (3.8) when m = 0 g-.ves 

K   f N* =2r-i S^[A
0 

+ ^(,ßt) 2K 
(3.23) 

Thus 

dNf _ 2K  dg^ 
dA TT   dA 0 o 

which cannot be negative, as is easily Heen in Figure 3.3.   The 

(3.24) 

inequality 

n s 0 must therefore be imposed in the relay problem.   A typical plot of N* 

for n = 1/2 and k] = K is shown in Figure 3.4. 

Example 2 (Absquare) 

The solution for the absquare problem is obtained by simply setting 

m = 2 in Equation (3.17).   The equation for the first 1/4 wave of the secondary 

signal is 
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N(e) 
N«   ■ 

K(A ) 
o 

VJ 

- -K 

»•(pit)  ■ 

;  0^(it^V2 

Figure 3.4.   Modified Nonlinear Element and Secondary Signal 
for Perfect Relay Where N* is Given by kj /A- 

over a Positive Range of A 

a(ßt) = 
2K 

n-2/ „. xn-2 

kjnCn - 1) 

3y specifying the second derivative to be 

w*)  ; 

52XT;:; 

0 <  ßt <  7r/2 

——r= n(n - l)kjiA IsgnA 
dA 2 '     o "      o 

(3.25) 

(3.26) 

it is only possible to guarantee that 

dN^        .   ,.   n-1 

o 
nki IA Isgn A    + C, 

dA J    o o (3.27) 
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and 

N* = k,iA R|sgn (A W CjA    - C2 (3.28) 

where d and C2 are constants.   However, solution of Equation (3. 8) when 

A    = 0 shows that N[0, (r*(^t) ]  = 0 for allowable a*(ßt), and thus C, = 0. 

Three degenerate cases occur when n = 0, 1. 2.   The first one, n = 0, 

is eliminated by Equation (3.19).   When n = 1, that is when the -^bsquare is 

linearized, it is convenient to use Equation {3.15) from which one may write 

öj = 0   ;        A    ^ 0    . (3.29) 

In addition, Equation (3.13) requires that 

cr(0)  = A A    < M 
o 

(3.30) 

where Mis arbitrary.   The only secondary signal which satisfies the require- 

ments of Equations (3.29) and (3.30) is one with infinite slope for cr(ßt)  < M. 

For example, the secondary signal of Figure 3.5 results in the modified non- 

linear element of Equation (3.31) which is linear in A  . 

ff(pt) 

IB1 pt + SQUARE WAVE WITH HEIGHT M /    \     V" 
M 

IT              2TT 

) pt 

\y 
Figure 3.5.   A Secondary Signal Which Linearizes the Absquare 

n 
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NFA ; a* (ßt) 1 = K I 
TT J   o 

A    < M 
o 

(3.31) 

The famhy of cm ^es for N and K are given in Chapter IV when Bj = 0 and M 

takes on different values.   As stated above, the constant Cj of Equation (3.28) 

is not zero for values of n other than one.   The case where n = 2 describes 

the original nonlinear element and cr(ßt) = 0 is the only correct solution.   The 

1 
exponent ■ •in Equation (3.5) causes the secondary signal to have infinite 

n - 2 

amplitude when n < 2.   Therefore the specified N cannot be physically 

realized for the admissible rauge 1 < n < 2. 

The last case which will be considered under the absquare example 

occurs when n - 3.   The secondary signal becomes 

^t)=^(Ä);        0^ßt T/2    , (3.32) 

which is a trianglt wave with amplitude B*  = -rr—.   Substituting this wave for 
3 k) 

a(ßt) in Equation (3.23) jives the following equations for N: 

N[Ao; cr^t)]   = K[^A^ +  B*AoJ  ;        Ao s B* (3.33) 

NFA ;a(i3t)|   = KfA^ + yB*2! ;       A0 - B*   • (3-34) 

K 
Therefore the gain factor kj in Equation (3.27) becomes—— and the constant 

Cj becomes KB*.   Although the kjA 3 term does appear in the expression for 

N A ; cr(i3t)   , it is not large compared with the CjA   term except when B « 1, 
L o J o 

in which case the usable range is much less than one.   The results in this case 

are not very satisfactory.   It is suspected, however, that not any other 

secondary signal will give an N closer to the one specified. 

I 

• 
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Consider next the nonlinear elements which are defined by 

N(e)  = KeP    , (3.35) 

where p is an odd positive integer.   It will be shown that all secondary signals 

give the same structural form of N.   Differences in secondary signals alter 

only the magnitude of certain parameters in N.   The modifiea nonlinear 

element is given by 

1  27r 

Nk; (TCSt)!   =—/KFA    + a(/3t)"|Pay3t    . (3.36) 
o 

The p    and lower order derivatives are computed as follows: 

dl!N 1    f 
 r= P1 7^-j Kd/3t = plK (3.37) 
dA o 

dP"1- -   2* 

dA 
o 
^T = p: itf [Ao + a(W] dm = p:KA (3'33) 

p-2 ■* 27r 

dA p-2      2    2,r n  o ^J   ^ 
o 

p'.K 
[Ao

2 + Cj]    , (3.39) 

where 

1    2lr 

C! =~/[(T(/3t)]2di3t (3.40) 

dP"3N   _  p!K 

dA 
o 

and so on for the lower order derivatives. 

i^T^V^V') • ,3•4I, 
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When aißt) * 0, all the constants which appear are of the form 

2TT 
Cn   =^/     HW12V n      2IT 

(3.42) 

and are nonzero.   For example, the modified nonlinear element for the cubic 

is 

N FA  ; (T(i3t)l  = A 3 + 3A Cj    . 
L o J o o   ' 

(3.43) 

Thus by changing the waveform of aißt) only the magnitude of Cj is 

affected.   It is found in practice that the equivalent dc gain KJA ; a(|St) j is 
I. o J 

often quite similar to the DIDF and can be obtained by dividing NJA wißt)    by 

A .   The dc equivalent gain for the cubic is given by the relation 

KTA  ; or(j3t)1   = A 2 + 3C!    . (3.44) 

Thus the gain for small inputs (A   — 0) is changed from zero to 3C].   This is 

a peculiar class of nonlinear elements where the waveform ofaißt) does not 

affect the "shape"' of N.   Therefore the secondary signal is not unique even 

within the restricted class of signals described by Equation (3.4).   The values 

for the constant Cj when cr{ßt) is a square wave, sine wave, and triangle wave, 

respectively, are 

Cj (square wave)    - B2 (3.45) 

Cj (sine wave) ~ B2/2 (3,46) 

Cj (triangle wave)  = B2/3 (3.47) 

The method of taking derivatives of N to get simpler expressions with 

which to work is not limited entirely to the nonlinear elements defined by 

Equation (3.5).   Limited success may be achieved where the nonlinear 
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element is piecewise constant or linear.   For example, the "linearization" of 

the relay with dead band by the method presented above requires a triangle 

wave.   The triangle wave is known to be a correct answer (Chapter IV).   The 

method also gives the same answer for the relay with dead band and the 

perfect relay when n = 2.   The secondary signal is computed to be 

/ M \ /2 / St \ /2 

crm  = {--)   (^)       ;        0 * ßt£ v/2    . (3.48) 

However, the process is much more tedious in the case of the relay 

with dead band and the resulting N is not what one might expect.   The specified 

structure   N = kjA    sgn /A \    is achieved (within a constant) only in the 

region a s   IA  !  ^  B - a.   A linear range results when IA  I < a 

(Figure 3.6). 

An important question which has been left unanswered by this procedure 

is:   Does a secondary signal exist which gives the desired modified nonlinear 

element   N = A 2 sgn /A \   ?  The procedure used above also suffers from the 

fact that it cannot be used when a more general type nonlinear element is 

encoumered. 

A brute force method which offers some possibility for the general 

problem is now given.   Only odd single valued nonlinear elements will be con- 

sidered.   The method is approximate and involves assuming the amplitude B 

of the secondary signal at the start.   A digital computer solution will be 

required in most cases.   The procedure is as follows: 
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a(pt) 

N [A0, a(pt)] 

M- A ̂ Vf["^)>-*. 
_ 1   i'_ i*2-  ^ ^   + A0 > s9n A

0 

;}      N, = 2k, oAo 

"TT —: 
(B-o)(B + o) 0 

■•-M 

Figure 3.6.   Sketch of the Secondary Signal cr(/it)  = B\—ßi\ 

and the Corresponding Modified Nonlinear Element 
for the Relay with Dead Band 

Step 1 

Assume an approximate secondary signal af/St) of the staircase type 

shown in Figure 3.7.   The signal cr(j3t) has the same properties which have 

been assumed above and described by Equatkm (3.4).   The amplitude B is 

divided into n equal increments (B = nA).   The width of the i    increment is 

T. and is unknown.   Define the T. so thai 
i i 
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fe 

Figure 3.7.   Approximate Secondary Signal 

Z   T. = 7r/2 
1=1    1 

Step 2 

(3.49) 

Assume the composite signal A    + crißt) as an input to the nonlinear 

element where, for convenience, the bias A   is confined to the A increments 
o 

as well.   That is, let 

Ao - JA - B    , (3.50) 

where 

j <  n    . (3,51) 

Both j and n are positive integers.   Now, write out the algebraic equation for 

the average output of the nonlinear element over a complete cycle /3t = 27r. 

The equations take the following form: 
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or 

A    =-1..|N(A    + A^T! + M^A    + 2A)T2 + ...  + N^A    + iA^T. +  ... 

+ N(Ao + nA)Tn] +-|-[N(AO - A)^ + N(AO - 2A)T2 +  ... 

+ N^A    - kA\T    +  ...  + N(A    - nAW  1    , (3.52) 

n n 
A    =—Z N^A    + iA^T. + —y,  N/A    - iA^T.    . (3.53) 

V        TT .   ,       V   O /ITT.,       \0 /I 

Substituting the value for A   given in Equation (3.50) and recognizing that A 

A 

is really N at this particular value A   gives 

N 
1   n 

. =—Z [N(JA + iA) + N(JA - iA)]T- 
J TT 

(3.54) 
i-1 

N*. is defined by the equation 

Step 3 

N. A NfA    = jA)    . 
j \  o / 

(3.55) 

Place the desired values of N* on the left-hand side of Equation (3.54) 

and solve for the unknown T..   There will, in general, be (n - 1) linearly 

independent equations and the relation given in Equation (3.49) is required to 

complete the solution.   If no negative or imaginary values are found for the T., 

this means that secondary signal a'(i3t) has been found which approximates the 

desired signal a* (ßt).   Since the amplitude B of the secondary signal is 

chosen a priori, it is advisable to have a variable kj multiplying the desired 

N.   For example. 

N* = kjlA m|sgn /A \ (3.56) 
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To specify kj initially would, in many cases, eliminate any possibility of 

obtaining a physically realizable answer.   It is remarked that after the wave- 

form of a(ßt) and the magnitude of N have been determined, a second choice of 

B might lead to a better approximate solution. 

Step 4 

When ä{ßt) has been found, draw a smooth curve through the midpoint 

of each increment.   This should give the best approximate solution CT*(/ft) . 

The value of n chosen will depend upon the desired accuracy.   It is suggested 

that the first try be made with a small n. 

A simple example of the linearization of the absquare will be given to 

show how the method may be used. 

Example 3 (Absquare) 

The absquare is described by the equation 

N(e) = e2 sgn (e) (3.57) 

The desired modified nonlinear element is given by 

N-TA ; (TG3t)l  = kjA   ;        A    <  B    . (3.58) 

Since N(e) is described b, a one-term polynomial, it is not necessary to 

choose a specific value for B.   Choose n = 5 for this example and the value of 

A becomes B/5.   Equation (3.65) is written out as follows: 

Akj = —(4AZT1 + 8A2T2 + 12A2T3 + 16A2T4 + 20A2T5) (3.59) 

2Aki =—OA2^ +  16A2T? + 24A2T3 + 32A2T4 + 40A2T5)        (3.60) 

3Ak1 = —(20A2T1 + 40A2T2 + 50A2T3 + 64A2T4 + SOA2!^)        (3.61) 
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4Ak1 ^ — (34A2T1 + 40A2T2 + 50A2T3 + 64A2T4 + 80A2T5)       (3.62) 

SAk! = —(SOA2^ + 58A2T2 + 68A2T3 + 82A2T4 + 100A2T5)    . (3.63) 

Successive elimination of the unknown terms shows that 

This leaves finally 

T! - T2 = T3 = T4 = 0 

Ak] =-^-A2T5    . 
1 TT b 

From Equation (3.49) it is seen that 

T5 = 7r/2 

Thus, 

ki = 2B*   ;        A    < B* 
0 

(3.64) 

(3.65) 

(3.66) 

(3.67) 

Equation (3.66) relates that o-* (ßt) is a square wave and Equation (3.67) 

states that the resulting gain is 2B* in the linear region.   This answer has 

already been shown in Example 2 to be correct.   When the nonlinear element 

is piecewise linear, the amplitude B does not have to be chosen first and the 

parameter A may be factored out of Equation (3.54) in a manner similar to 

the above example, 

th 
The examples given using the method of specifying the m ' derivative 

of N[A ; cr(/3t)I shows that only very limited success can be expected from any 

method where the nonlinear element is more general.   This applies to the 

approximate method described above where the nonlinear element may exist 

only in graphical form.   Although emphasis has been placed on the region 

A    £  B around the origin, ■','s restriction is not necessary.   The region of 
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N for A   > B may sometimes be altered in a specifiid manner by the 

presence of u ißt). 

If the desired secondary signal cannot be foundbyany of the methods des- 

cribed above, there is an alternative method of modifying the nonlinear element 

which may provp effective (suggested to the author by C. D. Johnson].   In orderte 

apply this alternative method, the desired K * or N* must lie in the region R which 

is attainable with some secondary signal.   It is usually not difficult toestablishR. 

The first step is to choose a convenient secondary signalö'f ßt), perhaps a sine wave. 

Step 2 is to determine how the amplitude P of 5? /?t) must be varied in accordance 

with the input signal amplitude A   in order to give the desired modified 

nonlinear element.   This may be done by solving the equation 

Nj7.o; a(/?t)l   =N*(A)     . (3.68) 

The unknown in Equation C3.68) is B and will only be function of A   once cr(/3t) 

is chosen.   This function B(A) will then become a "variable gain box" which 

will premultiply ä{ßi) before it is summed with the input A .   From a hard- 
o 

ware implementation viewpoint, this alternative method is not appreciably 

more complex than shaping the secondary signal o*(pt) in the inverse DJDF 

method. 

Oldenburger and Ikebe [40] have offered still another linearizing 

method where a relay function and a triangle wave secondary signal are placed 

in series ahead of the existing nonlinear element.   In effect the insertion of 

the relay function in front of another nonlinear element in the signal flow path 

results in a relay function for the combination.   It was seen in this chapter 
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that the relay is perhaps the most versatile nonlinear element when one is 

concerned with shaping the modified nonlinear element with an extra signal. 

Therefore, the approach presented in this chapter can be used to extend the 

method of Oldenburger and Ltebe to the more general problem of sj-reifying 

N A ; (T(ßt) rather than strict linearization. 
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CHAPTER IV 

THE MODIFIED NONLINEAR ELEMENTS AND DUAL INPUT DF'S 
FOü TEN NONLINEAR ELEMENTS 

In this chapter the modified nonlinear element and the DIDF's (Chapter II) 

of ten common nonlinear elements are given for the case when the secondary 

signal is either a sine wave, a triangle wave, or a square wave.  These secondary 

signal waveforms were chosen to show the qualitative trend in N[A;(T'8t) ] as 

the waveform is changed.   The specific nonlinear elements are as follows: 

a. Absquare 

b. Relay 

c. Relay with dead band 

d. Preload 

e. De^dband 

f. Limiter 

g. Lxmiter with dead band 

h.    Relay with dead band and hysteresis 

i.    Relay with hysteresis 

j.    Limiter with hysteresis. 

Closed form solutions for the modified nonlinear elements are given for all 

cases.   Closed form solutions are also given for the DIDF's with the exception 

of five nonlinear elements with sine wave secondary signals.   Approximate 
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solutions are given for some of these cases in the form of finite series 

obtained by trapezoidal integration tabulated along with the complete set of 

curves of both the modified nonlinear elements and the DIDF's,   The average 

DIDF method as explained in Chapter II was used to calculate the TSIDF with 

the exception of the three memory type nunlinear elements.   Otherwise, the 

modified nonlinear element method, also explained in Chapter II, was used to 

calculate the DIDF.   When the modified nonlinear element is derived, no 

special effort is made to insure that the equation holds for negative inputs A . 

It is simply necessary to recall that the modified nonlinear element is an odd 

function. 

It is emphasized again that the DIDF's of the double valued nonlinear 

elements found by the modified nonlinear element method are valid only when 

the frequency of the secondary signal is very high compared to that of the 

primary input component. An example is given in the appendix to show the pro- 

cedure used in deriving these modified nonlinear elements and DIDF's. 

Numerical answers for the DIDF's were obtained by digital computer evalua- 

tion of the given equations. 

The following definitions describe angles and symbols used in the 

modified nonlinear element and DIDF equations: 

IXl ^ absolute value of X (4.1) 

1; X> 1 
sgn (X)  =   ■ 

-1; X < 1 (4.2) 

X; IXl  s 1 
sat (X)  = 

sgn (X);  IXl  >  1 (4.3) 
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m*mm 

0, = sin-1 sat (—~ 
'A 
_c 
B 

ö2 = sin-1 sat m 

/b+ AN 
05 = sin"1 sat I—g—I 

03 = sin-1 sat' 

Oi = sin    sat 

/a - Ao> 

2T      2 \    B       > 

/a + A 

/b - A > 
TT ( 0 

ö4T=TSatl-T—. 

/b + A  ' 

05T=YSatl-^; 

• -i        /B Yi = sin ' sat j — 

72 = sin"1 sat {—^— 

y3 - sin-1 sat 
a + B 

74 = sin-1 sat 
i      . r b - B 

75 = sin"1 sat i 
b +  B 

(4.4) 
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4.1.   Absquare 

- Qz N(e) = e^ sgn (e) (4.5) 

N(e) 

Figure 4.1.   Absquare 

Sine Wave Secondary Signal (Figures 4.2 and 4.3) 

»(v8) = 
(2V+ *h-{^)+ 3V.Mir) A    < B 

o 

(4.6) 

K(A,B) -—STT* [(7A2 + B2)E(k)   -  (A - B)2F(k)] Sir'A' 

24TB 
(A + B) 

Triangle Wave Secondary Signal (Figures 4.4 and 4.5) 

A 3 

N A  ,B    = \ 
o 

A B + TS" ;     A   < B o .3B o 

9       B11 

A 2 + -^-  ;        ^s.    > B 
^   o        3 o 

(4.7)' 

(4.8) 

(4.9) 

2F(k) denotes the complete elliptic integral of the first kind and E(k) 
denotes the complete elliptic integral of the second kind.   The modulus is 
defined as k. 

56 



I 
X! 
>i 

I 
o 
Ü 

s 
I 
I 
I 
CQ 

< 

a 

w 

i—i 

c 
o 
Z 
X3 
0) 

T3 
O 

■i-H 

57 

^«»^^AMA^^rt^^^^'1^^ ' 



1    ■      ■ ' 

Figure 4.3.   DIDF for Absquare, Sine Wave Secondary Signal 
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9.0 
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3.0 
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1.0 

B= 9 —- ^ 

y y 

8 ^ ^ 
y1 

__7  ^ ^ ̂  
/ S    -^ 
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S* s 
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5,, 

^ 

4 r 
4 . 

/ ̂  

r 
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» 123456789 
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Figure 4.5.   DIDF for Absquare, I .-iangle Wave Secondary Signal 

60 

\ 



K(A,B) 
fi[(-^Hl)+7^f(I^A)]-■> B 

B+~-;   A. B 

Square Wave Secondary Signal (Figures 4.7 and 4. 8) 

N M 

Kv-i,B)  — 

2BA 
0 

A 2 + 
0 

;      A   < B 
0 

B2   ;        A    > 
0 

B 

K2A ^U-i -V 
2B   ;      A  < B 

(4.10) 

(4.11) 

A >  B 

(4.12) 

4.2       Relay 

N(e) = M sgn (e) 

Sirxe Wave Secondaiy Signal (Figures 4. 9 and 4.10) 

N(Ao,B)^sin-.sat(^) 

4M   1 
K(A,B)  = ^ £[{A - B)K(k)  +  (A + B)E(k)]     ; 

(4.13) 

(4.14) 

(4.15) 

N , 

M 

•M 

Figure 4.6.   Relay 
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Figure 4.8.   DIDF for Absquare. Square Wave Secondary Signal 
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Figure 4,10. DIDF for Relay, Sine Wave Secondary Signal 
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where 

1^ = 
4AB 

(A -  B)^ 

Triangle Wave Secondary Signal (Figures 4.12 and 4.13) 

N(vs) = Msat(-#) 
M 4M 

KCA.B)  =^(2/1 - sin2>',)  +—cosy, 

Square Wave Secondary Signal (Figures 4.14 and 4.15) 

(  0   ; 

M   ; 

A    <   B 
o 

A    ^ B 
o 

N-(AO,B) = 

(4.16) 

(4.17) 

(4.IS) 

(4.19) 

(4.20) 

4.3       Preload 

N(e) = Ce + M sgn (e) (4.21) 

N(e) 

M 

-M 

Figure 4.11.   Preload 
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Figure 4.13.   DIDF for Relay, Triangle Wave Secondary Signal 
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Figure 4.15.   DIDF for Relay. Square Wave Secondary Signal 
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Sine^vejecondarvjignal (Figures 4.16 and 4. 17) 

I 

N(A  B.C,M)= CA  +iH 
V    0 / O TT 

sin"1 sat'    0 
A 

c 
B 

4M   1 
K(A,B,C.M, =C + ^p((A-B,K(k) + (A + B)E,k,1; 

(4.22) 

(4.23) 

where 

k2=^AB 
(A + B)2 

Triangle Wave Secondary Signal (Figures 4.18 and 4.19) 

N(AO)B,C,M) = CAo + Msatf-2.) 

K(A,B,C,M)  = C +   M-iZy, _   sill2vl  + 
4M BTT   ^1-      sin ^J) +__C0STI 

Square Wave Secondary Signal (Figures 4.20 and 4.21) 

N(AO)B,C)M) 

CAo   ;        Ao < B 

CA    + M   ;        A    > B u o 

K(A)B;C,M)  =C+i^Ji  _sat 
(B

A)
2 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

4.4       Relay with Dead Band 

N(e)  =—fsgn (e - a)  + sgn (e + a) ] 

Sine Wave Secondary Signal (Figures 4.22 and 4.23) 

N(Ao)B,a)^(Ö3.,2) 

(4.29) 

(4.30) 
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Figure 4.17.   DIDF for Preload, Sine Wave Secondary Signal 
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Case a 

Case b 

N(e) 

 M 

Figure 4.24.   Relay with Dead Band 

A + B < a 

K(A,B,a)  = 0 

(A - B)2 <   a2 

(A + B)2>   a2   , 

K,A,B,a,=Äi   /f 
TT     A   V A 

2E - F + 
Ik1 - a' 

2AB 

A ^ B   , 

2 - i|n(Q-2,k) + F 

(4.31): 

where 

? 

j   , A2 + B2 - a2 

2AB 
1   - '         A /a2 - A2 - B2 ^ 

B \     2A2 - a2    / 

(4.32) 

n (or.k) is the complete elliptic integral of the third kind and may be 
found in terms of F and F times the Jacobian zeta function Z(ß,k).   The 
product FZ(^,k) is also a tabulated function [30]. 
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2 _  (A + B)2 - a2 

a   - 
(A + B)2 

K(B,B,a)  = k)-Ä^ .k) ; 

(4.33) 

A = B      (4.34) 

where 

4B2 

^ = sin 
'»-^ 

(4.35) 

(4.36) 

Case c 

4M 
K(A)B,a)  =-^-7 

(A - B)z > a 2 .   „2 

-/(Ä" B)2 - a2   * 

2 

(A2 - B^F +  [(A + B)2 - a2]E 

+ (2A  - aZ) &-1 n(.2,k) 

where 

a*=      4AB 

«i 

(A + B)2 

2 

A /a2 - A2 - B2 \ 
B \   2A2 - a2      / 2A2 - a2 

Triangle Wave Secondary Signal (Figures 4. 25 ™* A oa) 

N(A0,B,a)=|.|Sat 
f       /a + A, 

B sat 
a - A 

B 

K(A,B,a) 

(4.37) 

(4.38) 

(4.39) 

(4.40) 

M r 
B^-   ys - 72 - sin 73 cos 73 + sin y2 cos yz 

2(a - B)  i 4B -i 
j (cos 73 - C0S72)  +—COS73 (4.41) 
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Square Wave Secondary Signal (Figures 4.28 and 4.29) 

Ä(Ao'B'a)=f[S^(Ao + b) + ^(A0-b) 

+ sgn ^Ao + (A + sgn /Ao - c) 

2M K{A,B,a) =—_(C0Sy2 + cos 73) 

(4.42) 

(4.43) 

4.5  Dead Band 

N(e) = C[e - a sat (e/a) ] (4.44) 

N(e) 

/ 

I 
Figure 4. 27. Dead Band 

Sine Wave Secondary Signal (Figures 4.30 and 4.31) 

N(Ao>B,a) = CAo --|[(02 
+ h)\ 

+ B(cos Ö3 - cos e-J +a(W3 - 02)] (4.45) 

The following approximate solution is derived by trapezoidal integration of the 

second integral in the average DIDF method as explained in Chapter II. 

^(A.B.a)  =7(^ +Xsin ^) +-^ ^ + gn + 2 ^  g.j (4.46) 
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where 

gi 
(l-|cos4>.)   -sin-1 sat ^) 

and 

H-Oi1-8^) 
D. ^   /A2 + B2 - 2AB cos (p. 

-i     . /a2 - A2 - B2>\ o   - cos    sat ^ ^ ^ 
s 2AB 

<t>: 
i A        i       _,        /a2 - A^ - B 

{|)_ =— cos    sat l- 
2> 

(4.47) 

i     n    s      n \       2AB ■' 

n = integer s 2 

The accuracy is increased as n is allowed to become larger. 

Triangle Wave Secondary Signal (Figures 4.32 and 4.33) 

%'B'a)  ^[f (Ö3T2 " Ö2TV Ao (^ Ö2T  - Ö
3T) 

(Ö2T ' Ö3T) 

(4.48) 

(4.49) 

(4.50) 

(4.51) 

+ a 

N(A  .B^^ = CA    (l + ^)    ;        B > A 

(4.52) 

(4.53) 

K(A,B,a)  - -2 
7r A 

+ sin y3 cos y3 

(' - #)! + (l); 

/A     aA\ 
(B+F) 

(cos y2 - cos 73) 

+   sin 72 cos 72 
/A      aA\ 
\B ' B2/ 

4a /A      aA\ /A      aA\ 

3\B/ 
(cos3 y« - cos'i X2)  + -JT 

7r 

K(A,B,a)  = C (-1)^ 

B 

ß > A + a 

(4.54) 

(4.55) 
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Figure 4. 33.   DIDF for Dead Band, Triangl 
e Wave Secondary Signal 
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Square Wave Secondary Signal (Figures 4.35 and 4.36) 

N(Ao>B.a) = C  Ao - 1 j^2 + sgn (a -  B - Ao) - sgn (a + B - A^ 

+      4    0 l^sgn (a - B - Ao) + sgn (a - B - AJJ 

(B - a " Ao) 

or 

1 - sgn (B - a - A\ (4.56) 

K(A>B,a) -[■ 
2B 

73  ~ 72 ~  Slri 73 cos 73 +  Sln T2 cos Ta 

2a 
+ —T- (cos y3 - cos 72)   _ "7" (cos 72 + cos T3) 

K(A,B,a) = C   ;        B > A + a 

C 
K(A)B)a)  = A < 2B   ,        B = a 

(4.57) 

(4.58) 

(4.59) 

4.6       Limiter 

N(e) = aC sat \a / (4.60) 
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Sine Wave Secondar}^ Signal (Figures 4.37 and 4.38) 

N>o'B'a)4[(Ö2T+Ö3T)Ao+B( cos 03T - cos 9^] 

+ a(03T-02T) (4.61) 

K(A,B,a) = ' "T^s +f SinO   "A  (^o + Sn 
+ 2 Z'g.j 

(4.62) 

where 

I 
g.^l-|coS0. -sin-1 sat/^-\- f sat _§_     2a\   / ,/ a\2 

(4.47) 

D. - N/A
2
 +  B2 + 2ABcos 0, 

0    = cos-1 sat ( -i a2 - A2 - B2 

2AB 

(4.63) 

(4.64)) 

0.   =—0 
i      n    s 

(4.65) 

n = integer > 2    . 

Triangle Wave Secondary Signal (Figures 4.39 and 4.40) 

(4.66) 

HAo'B'a) =T[f (02T2 " 03T2) +  Ao (02T + Ö
3T)   

+ a(Ö3T " Ö2T )    ' 
(4.67) 

K^B-a)  =-21 
TT    A (' - f / + (|): 

(cos y3 - cos -y2) 

i 

- sin 73 cos 73 (|-+ aA) + siny2cos72(^ -|-) 

+ f-V3 + .ä(-|+f) + T!(f-^) 

— (—)  (cos 73  - COS3 73) (4.68) 
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Square Wave Secondary Signal (Figures 4.42 and 4.43) 

N(A  .B.a) =-jJBr2 + sgn(a-B-A\-sgn(a+B-A^1 

(Ao ' a)  [Sgn (a - B - Ao)   + sgn (a + B - AJ ] 

(Ao + a - B) |^1 - sgn (B - a - A^] (4.69) 

K(A c r ,B,a)  =--7 
TTL- 

2B 
A 

3 + y> - sin yj COST, - sin 72 cos y2 

2a "1 
(COSY3 _ COS yj)   T — (COSY3 4- cosy.)     (4.70) 

4. 7       Limiter with Dead Band 

N (e)  = C Tb sat {^j - a sat (—) 1 (4.71) 

N(e) 

dh-z) -- 

7 
Figure 4.41,   Saturation with Dead Band 

Sine Wave Secondary Signal (Figures 4.44 and 4.45) 

f(Ao,B,a,b) =—[(04 + f)5 - n2 - Ö3)Ao 

+ B(cos 05 - cos Ö4 - cos 03 + cos Ö2) 

+ b(05 - 9,)   - a(Ö3 - 02) 

Nl 

(4.72) 
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Figure 4.43.   DIDF for Limiter, Square Wave Secondary Signal 
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where 

K(A,E,a.b)  _ 1 
C M^a-^b+|Sin^a-|Si^sb) 

sa n-l    > 

sb 
7r2n f   + f 

i o       n 

n-l 

2 F,f. 
j-J J 

(4.73) 

-i „_. a2 - A2 - B2 
0o    = cos-1 sat 

sa 2AB 

<f> ,   = cos"   sat 
sb 

-i _ b2 - A2 - B2 

2AB 

(4.74) 

(4.75) 

;. =  (l ---pcos 0     ) 
i      V        A sa / 

f,  =   (l + -J COS (^     \ 
J       V        A vsb/ 

D 

-sin' '-vH-^f^f] 
(4.76) 

-sin-^+/satTb_2b\    A _ sat (± 
D. 

J vw 
'. = -JA2 + B2 + 2ABcos t^. 

D   = ^A2 +  B2 + 2AB cos (p. 

n = integer > 2 

0.    =--<t> 
i      n ^sa 

(4.77) 

(4.78) 

(4.79) 

(4.80) 

(4.81) 

0, Ti      n ^sb 

Triangle Wave Secondary Signal (Figures 4   46 and 4.47) 

2     fl   2     fl 
T      

02T   - 0rvT 
2 +  0     2) 

T 4T / 

A     /a 
o ^4T + "ST " V " "si)   + a (' 92T -  »3TJ   - b (»4! "  '5T) 

(4.82) 

(4.83) 
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K (COS yj   -   COS 73) 

"     V1 " ¥/   + (B")      
(COS

 
yi ' C0S y^ 

+ sin y3 cos y3 (f + ~?) - sin y5 cos , 5 (| + ^) 

+ sin 72 cos YZ 
/A      aA\ 

sin-^ cos yi 
/A      bA\ 

■%oo8y3+J±Cosy5.ys{± + ^)+Yj[A+U) 
B B 

/A      aA\ /A      hA\ 
Y2(i-^)+^(B-F) 

—(-) (cos3 73 - cos3 72 - cos375 + cos374)[   (4.84) 

Square Wave Secondary Signal vFigures 4.48 and 4.49) 

N(A ,B,a,b) =-^   sgn (b - B - A \- sgn(b + B - A ) 

- sgn (a - B - A W sgn (a + B - A  \ 

+ (—^)LSgn(a - B - A0) + sgn(a + B - Aj 

b - A \r /b  - A  \r 
- ^-ß-^sgn (b - B - Ao) + sgn(b + B - Aj 

/B - a - A \   r 
+ I B—^j   [l - ^ (B - a - Ao) 

/B - b - A \ r v 
(4.85) 

c 
K(A,B,a)b) -—75 + 74 - 73 - 72 f sin72 cos 72 + sin73 cos 73 

2B 
sin 74 cos 74 - sin 75 cos 75 + -r- (cos 72 - cos 73 

cos 74 + cos75)  -~(Cos 72 + cos 73) 
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to 

< 
0   0.50 

Figure 4.49.   DIDF for Limiter with Dead Band, 
Square Wave Secondary Signal 
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2b , 1 
— (cos y4 + cos y5) 

4. 8      Relay with Dead Band and Hysteresis 

(4.86) 

K(e) 

M 

•b 

-M 

Figure 4.50.   Relay with Dead Band and Hysteresis 

Sine Wave Secondary Signal (Figures 4. 51 and 4.52) 

M 
N(A,E,a,b)  =^r(Ö5 + 03 94 - 92)   ;        B > -^-li- ,(4.87) 

subject to the restrictions that 

02 is set to -IT/2 when 94 = -ii/2 

ßi is set to +7r/2 when Ö2 = i-/2 

03 is "et to +7r/2 when 05 = 7r/2 

05 is set to -7r/2 when ßz = -t/2 (4.83) 

A . 2M "T4 
KlA.B.a^)  =—-   j 

o 

. _! /a + A sin wt\       . .j/b + A sin cjt> 
sin cut dcot 

2M 
7r2A 

T3 

/ sin-C 
a - A sin cot 

B 
^\       . _i / b - A sin wt\ 
-r sin I—5—/ sin cot dcot 

2M 
TTA 

(COS 74  +    COS 73) 4.89) 
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Figure 4.52.   DIDF for Relay with Hysteresis and Dead Band. 
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These integrals may be solved in closed form.   There are two types to con- 

sider.   Replacing a and b by c to give more generality, the two integral ^ypes 

become 

-T4 / \ 
2M    r    . _! / c + A sin a;t\ -—  J   sm     ^ _ j Kl = 7^   ;   f'm 

o 

73 
2M r    . _} /c-Asinajt 

K2 =  TT        Slfl 

rr A o 
/ B 

sin wt dcot 

sin ü)t da;t 

(4.90) 

(4.91) 

K. 

K, 

2M r 1    .    ! /C\       cos 
li .in"1 l^- 

A sinyAI 
+ K ii 

^4.92) 

2M I-1    .    1 /C\      cosy,   . _i /c - Asiny^"] 
= 7-[rSin     (ij   -       A    Sin     ( —^)J + K^ 

(4.93) 

where 

Tl 

Kll= / 
o 

cos2 cot dwt 

c + A sin a)t\2 

 B  

(4.94) 

r2 

K21 = / 
cos2 tot dcot 

o   ;      /c - A sin cot\2 
(4.95) 

A general form of the solution for both Kjj and KJI is given as follows: 

Kx = I^^[E(^k)  + (^]d)F(^k) 

(a2 - 2 +-|rW,a2,k) 

a2 sin ft cos (p v 1 - k2 sin2 <fo 
1 - a2 sin? (p J 

(4.96) 

(4.96) 

The correct values of k, g, or, <£, and h are given in Table 4-1. 
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Table 4.1.   Variables Associa-ed wtih the DIDF for Relay with De;:d Band 
and Hysteresis with Sine Wave Secondary Signal 

'i 

K-n K21 

Case a 

B - C 

k2 

g 

a2 

<P 

h 

4AB 4AB 
(A + B - C)(A + B + C) 

2A 

(A + B- C)(A + B+ C) 

2A 
A      '  1 

v'A +  B - C)(A + B + C) 

2A 

N/'A + B -C)(A - B + C) 

2A 
A + B - C A + B + C 

. _!   /A + B - C 
Sin    J 2(B - C) 

A
2(B-C-^ 

. _!   /A +  B + C             | 
Sin    J2(B + C 

-|-(B -  C - A) 

Case b 

B-C 

k2 

g 

a2 

h 

(A + B - C)(A + B + C) 
4AB 

(A + B -C)(A + B+ C) 
4AB 

A      ^ 1 

B + C      , 

\/A/B 

A + B - C 
2A 

N/ A/B 

A + B - C 
2B 

A      "  1 

. _i   /   2(B - C) 
Sm    N/ (A + B - C) 

2 (A - B + C)(A + B - C) 

. _i  /              2AB 
"*"   N/(A+ B-C)(B +C) 

1
2(B + C-A)(A + B-C) 

A 

Case c 

B+ C 

k2 

g 

a2 

<P 

h 

4AB 4AB 
(A + B + C)(A + B - C) 

2A 

(A + B+ C)(A+ B-C) 

2A 
A      < 1 

V (A + B + C) (A + B - C) 

2B 

V (A + B + C) (A + B - C) 

2B 
(A + B + C) (A + B - C) 

3ln-l/(
B -C)(A + B+ C) 

Sin N/             2AB 

^ (A - B + C) 

„in_i/(A + B-C)(B+C) 
Sin   -7                2AB 

■^ (A - B - C) 
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Relay with dead band 2(a + b) 
N(A,B,a,b)  = and hysteresis (b - a - 2B) 

(Figure 4.53) 
^.97) 

for B < 
b - a 

N 

M4 

(o + b)   b-B    A 

■■-M 

Figure 4.53.   Modified Nonlinear Element 

iKfA.E.a.b) I  = ^rW 2 + 2 COS {y3 + y^   ,     B < —^      (4.98) 
TTA 

1  vcosyj + cosy2/ 
(74   - 73) 

2 B<^-=-^    (4.99) 

Triangle Wave Secondary Signal (Figures 4. 54 and 4.55) 

Case a 

Both NfA^B.a.bj and K(A,B,a,b) are the same as in the sine wave case. 

Case b 

(^<B<b; 

116 

\ 



■   ~ .«J 

*     ■        o 

3C __ 

117 

I III ll I    I limWIHUI—!!■ 



1.40 

1.20 

1.00 

co 
0.80 

-Is 
0.60 

0.40 

0.20 

1 
1 

• 
b 

■   ■ 

= 2a 

\ 
>»• 25 

J\ J0'\ 
1 i 

1 

^ k 1 3 

4 
K ̂

 
5 

«  ^^S» 
—-^ •^ 10 

0 12345678 
A 
b 

Figure 4. 55,   DIDF for Relay with Dead Band and Hysteresis, 
Triangle Wave Secondary Signal 
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r 

or 

/  M Ä 

BAo 

^(A^B.a.b)- 

B - A    & b 
o 

\ 

2 

M 

(,     a + b    Ao\ 
V1 ~ "IT" + T-/   ;     -b < A    - B < 

a < A    - B 
o (4.100) 

/ 0   ;     Ao < b - B 

N(Ao.B.a.b) J f (i . ü_l£ A) ;    b.B<Ao<B + ■ 

M A    > B + a 
o (4.101) 

N (Ao'B'a'b) =T [S&n (AO + b - B)   - sgn (Ao + B + a) 

+ sgn fAo - b + B) - sgn (Ao - B - a)l Fl 

\ ~\ r 
,   a + b     ' o        M / v 
~B~+   B~J + TLSgn (Ao + b + a) 

(A0-B-a)"]    ; sgn 

M 

(4.102) 

K(A,B)a)b)  -^g-(v3 -74 + siny4cosT4 - sinys cos 73) 

2M/       a + b\. 4M 
cosy3 

(4.103) 

Case c 

(B > b) 

/ M A 
-5-A     ;      B - A    > b 

N(A,B.a.b)J^fl-iLlJl+Vj   . 
V   0 /     I    2   \ 2B B /   ' 

:< 
2B B/ 

M   ;     a < A    - B 
o 

-b < Ao - B < a 

(4.104) 
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K(A,B,a,b) =  (same as case b) 

Square Wave Secondary Signal (Figures 4,57 and 4.58) 

Case a 

n      b - a\ 
B<—-/ 

See Case a for sine wave secondary signal. 

Case b 

(4.105) 

\ 2     / 

N(Ao)B,a.b) =|.[sgn(Ao + B + a) + Sga(Ao + B - b) 

+ sgn (Ao - B + b) + sgn(Ao - B - a)l      (4.106) 

2M 
K(A,B,a,b) = —[cos Y4 + 00573] (4.107) 

Figure 4. 59 shows the phase of DIDF for relay with hysteresis and 

dead band. 

4.9      Relay with Hysteresis 

N(e) 

M 

M 

Figure 4. 56.   Rölay with Hysteresis 
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Figare 4.58.   DIDF for Relay with Dead Band and Hysteresis, 
Square Wave Secondary Signal 
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Figure 4. 59.   Phase of DIDF for Relay with Hysteresis and Dead Band 
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t 
Sine Wave Secondary Signal (Figures 4.60 and 4. 61) 

Case a 

(B < b) 

NCA.B.a.b) = Relay with hysteresis width 2(b - B) 

4M 
iK(A(B.b)' =~ 

TTA 

Case b 

A—'i^) 

(B > b) 

4in-,(^).sin-.(^ 

(4.108) 

(4.109) 

(4.110) 

N A  ,B,b 
o 

M   ;     A    > B - b 
o 

;     A    < B - b 
o 

(4.111) 

K(A,B,b)  = 2(Kn - K22) (4.112) 

where K^ and K22 are defined for the relay with hysteresis and dead band, sine 

wave secondary signal.   The variable c must be replaced by b in the equations 

for Kn and K2i- 

Triangle Wave Secondary Signal (Figures 4. 62 and 4.63) 

Case a 

(B < b) 

See Case a for sine wave secondary signal. 
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Figure 4.81,   DIDF for Relay with Hysteresis, Sine Wave Secondary Signal 
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Case b 

N(Ao.B.b) = 

(B >  b) 

-BAo   ' 
A    < B - b 

o 

M   ; A    ^    B 
o 

2M 4M K(Ao,B,b) =-^B<sin')/4Cosy4 - y4)  +^cosyi 

Square Wave Secondary Signal (Figures 4.64 and 4.65) 

Case a 

(B < b) 

See Case a for sine wave secondary signal. 

Case b 

(B > b) 

N^Ao.B,b) =~  sgn/Ao + B - b) + sgn(Ao - B + b)     (4. 

(4.113) 

(4.114) 

115) 

4M 
K(A,B,b)  = —- cos y^ 

TT A 

Figure 4.66 shows the phase of DIDF for relay with hysteresis. 

(4.116) 

4.10     Limiter with Hysteresis 

Sine Wave Secondary Signal (Figures 4.67 through 4.69) 

Case a (Figure 4.71) 

(B < b) 

N, 
27r 

Trb - 2aÖ2 + A    (TT + 2Ö2)   - 2Bcos $2 (4.117) 
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Figure 4.65.   DIDF for Relay with Hysteresis, 
Square Wave Secondary Signal 
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Figure 4.68.   DIDF for Limiter with Hysteresis, 
Sine Wave Secondary Signal 
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Figure 4. 69.   Phase of DIDF for Limiter with Hysteresis, 
Sine Wave Secondary Signal 
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Figure 4.70.   Limiter with Hysteresis 

B< L- 
<B<b 

Figure 4.71.   Modified Nonlinear Element When B < b 

lK(A,B,a,b) I K 2 + hA
2 

A 
(4.118) 

A K(A B,a,b)  = tan"1—^- 
  SA 

(4.119) 
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1 

where 

and 

T4 

g. dM. A sin out 
b - a 

"^2 
'-) sin cot doit 

Ti-/-fh-2as'n"'sat(a"A
B

s"'"') 74 L B / 

+ 2A sin cot sin"1 sat (a - A sin cot \ 

- 2B jrrsat (tsj^if sin cot dcot (4.120) 

T4 

^A ~ 1?Ä  / C  (A sin wt - -^-£) cos cot dcot 
-72 

1  /  f  .b - 2a sin- sat (t^-') 

+ 2A sin cot sin-1 sat (a " A sin ^ 

f 
B ) 

2B Ji-s*t{U^j*f\ os cot dcot (4.121) 

Numerical or approximate solutions to the above integrals are 

required. 

Case b (Figure 4. 72) 

(B > b) 

C   f 
~ 27[B(COS ö5 + cos ez - cos 04 - cos ß2)  + Ao(02 + Ö3 + 94 + 05) 

+ b(Ö5-Ö4)  +a  (Ö3-02)J    ;      Ao<B-b    . (4.122, 
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Figure 4. ',2.   Modified Nonlinear Element When B > b 

C   r 

N5 :=ir[Ao(7r + 202)  + ^ - 2a02 - 2B cos n2     ■ 

B - '3 ^  A (4.123) 

4   1*  C K(A,B.a.b) =~ f -^ B     1 .(b.Asincty^^^a.A^^ 

- Bji-{*jLAjii^y. Bjr7(III^f 

+ sin-f + *s™^   +   sin_1(b_1Asina;t 

+ a sin 

in cot   sln-^g " A sin "^ ,   sin-1(^_^_£i^') 

) B 

+ b sin"' ( b + \sin <£) _ b sln-i (b^sin wt 

+ —    f   £~\ ■nk J    27r ' 
-74 

f sin wt dot 

TT + 2 sin"1 ^-a " A sin ^ \ ' L v      B       y_ 
A sin wt    TT + 2 s 
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- ^rb - 2a sin-1 (^ - Asinut\ 

Triangle Wave Secondary Signal (Figures 4.73 and 4. 74) 

Case a (Figure 4.71) 

sincotdwt +-lcosy3    .    (4.124) 

where 

(B < b) 

N, T[^IK-¥-B.2b.f  ; 

a-B^A    <a+B 
o 

^(A .B.a.b)^ ^y^v 

h. 
K = tan-1 — 

gA 

C   " 
?A = ^-  A (74 + y2 - sin 72 cos y2 - sin y4 cos 74 

+ 2b(cosy3 + cos 74)  + a(coS72 + cos 73) 

+ T I1 +~&) *y2 + 'y3 + sin T2 cos 72 - sin 73 cos 73) 

A2   / 1 3 1 3      \ 
+ 2B lC0Sr3 "  COSy2 +ycos rs --3-cosj72/; 

1 /        a2\ 
+ T\B  + ¥/   (C0Sy3   -   COS72) 

(4.125) 

(4.126) 

(4.126) 

(4.127) 

B < b - a 
(4.128) 

f 
W:ito6aimmn.i»»*iM****.vu 
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Figure 4.74.   DIDF for Limiter with Hysteresis, 
Triangle Wave Secondary Signal 

141 

i: - ■      . ■■V-      ■      ■ 



A (sin VA - sin2y2)   - 2b sin 74 + a(siny2 + sin 7,) 

and 

+ T ^ + |-)(sin2^ - sin2T3)  --^ (sin3
y2 - sin3 73) 

1  /        a2\ 
"T lB + l"j(sinY2 - sin73) B < b - a 

(4,129) 

gA      TTA 
A
(Y2 

+ 74 - sin 72 cos 72 - sin 74 cos y4 + 2b cos 74 

+ a(cos72 + 2 cos 73 - cos74)  + A (l + ^){2yz - 74 

- 72 + sin 72 cos 72 - 2 sin 73 cos 73 + sin 74 cos 74) 

A2 / 11 
"2B i008^ - 2 cos 73 + cos74 -—cos3 72 -_cos374 

+ -3 cos3 73)   +   (B +~) (2 cos 73 - cos74 - cos72) (4.130) 

b - a 
B <  b    , 

c r 
lA = ^Ä   A(-sin 74 - sin272)   - 2bsin74 + a(sin74 + sin 72) 

+
 T(

1
 

+ f)(sin2^ - sin2T4)   - 4 (sin3^ - sin374) 

1 /        a2\ 1 
"YVB +"B>)(sin">/2 - sinv4) 

b - a 
—2— ^   B ^  b   .      (4.131) 

Case b (Figure 4.62) 

N. = C(i^) 

(B > b) 

A 
^  ;       A   < B - b (4.132) 
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m.   -u^wm- ■ —       "^ '■   ■ ■■J    J       "I       ' II  ■        »"   -,l1 

A   2 
N, =■ H-iK-^-B 

B-b^A    <B+a 
o 

2b 
B 

(4.133) 

N [Ao,B,a,b,cj = M A   > B + a 
o 

(4.134) 

K(A,B,a,b,c)  =—  (    =    ) (-^4 + sin y4 cos 74) 

(l + g-j^a + n - sin74 00374 

A / 
sin 73 cos 73)  - — (cos 74 - cos 73 

yCOS3 73   -—COS3 74) 

1 / L a2\ 
+ Ä" \ B / (C0S y4 " C0S T3) 

2 
+ -r- (b + a)cos 73 B > b (4.135) 

Square Wave Secondary Signal (Figures 4. 75 and 4. 76) 

Case a (Figure 4.77) 

(B < b) 

3     2 YA    +b-B^    ;        B-b<A    <B + a 
\   0 / 0 (4.136) 

=A      TTA -g- (2,Y4 + 72 + T3 - 2 sin 74 cos 74 - sin 72 cos 72 - sin 73 cos 73) 

2b cos 73 + a(cos72 + cos 73) + B(cos73 - cos 72)      ; 

(4.137) 
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Figure 4.77.   Modified Nonlinear Element When B < b 
for the Square Wave Secondary Signal 

_c_rA 
TTA |_2 (2 sin2y4 - sin2 72 - sin2 73) + b(sin>4 - sin 72) 

+ a(siny4 + sin73) + B(sin73 - sin 

b - a 
B < -—— 

in 72)       ; 

(4.138) 

gA ~ ^A   T^ + y2 + 2T3
 " Siny4 cos^ - sinT2 cos 72 - 2 sin 73 cos 73) 

b 0 1 
+ —(3cos74 - cos 72 - 2 cos 73) + a (cos 72 - 0037^      ; 

b - a 
< B < b    , (4.139) 

'[2 
C   I A     ,   . 2 , b 

"A     ^iA !~   (Sin  yi ~ sm y2)  +T(3 sin'>'2 - 2 sin 73 - 3 sinyj 

+ —(3 sin7?; - 2 sin 73 +■ sin 74)  + B(sin74 - sin 72) 

b - a     „     u -—<B<b   . (4.140) 
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Caseb (Figure 4.78) 

(B > b) 

A 
N 

B-b 

N5 = T(Ad + b.B) 

Figure 4.78.   Modified Nonlinear Element When B > b 
for the Square Wave Secondary Signal 

N(A,B,a,b) 

K(A,B,a)b) 

(B + a) sat (TT-)-<* - v**^)] 
(4.141) 

2C 
~A ■^'Ta + Ji - sinvj cos 73 - siny4 cos y4) 

b cos T4 - a cos y3 +  B(cos y3 - cos y4)       ; 

B > b (4.142) 
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CHAPTER V 

TWO-SINUSOID INPUT DF FOR RELAY WITH HYSTERESIS 

In this chapter the TSIDF is calculated for the relay with hysteresis, 

taking into account the frequency ratio of the input components.   This is done 

by using the "Average DIDF" method explained in Chapter U.   The nonlinear 

element is defined in Figure 5,1 and the essential mathematical steps are 

indicated in the following equations: 

N(.), 

M 

.M 

Figure 5.1.   Relay with Hysteresis 

27r       27r 

K   = K (A.B.n) 
r        r 27r 

77 j d<p /NfA sin pcot + B sin (qwt + 0) ]sin pwt dwt 
A  J J 

o        o (5.1) 

148 

'-''*■-itmimmiw tit i\timiTnim9it\mti\'m 

1 



2T      2V 

K. = K.(A,B,n)  = ~~Tr / d0 /Nf^ sm vui + B sin (qa;t + 0) Jcos pojt dcjt 
o o (5.2) 

W K 2 + K.2 

K = tan 
K. 

.i_L 
K 

(5.3) 

(5.4) 

where K , K.,  (Kl, and/K are the real part, imaginary part, magnitude, and 

phase, respectively, of the DIDF.   The primary component in the input signal 

is 

6] = A sin pwt (5.5) 

and the secondary component of the input signal is 

ej = B sin (qwt + 0)     . (5.6) 

It is not necessary to identify input frequencies p and q since only the fre- 

quency ratio n = q/p is important.   However, they have been included in the 

formulation for computational purposes.   This will be explained further in the 

discussion which follows. 

It was stated in Chapter II that the average DIDF as computed for 

multivalued nonlinear elements has meaning only when n is an irrational 

number.   However, only integers are chosen for p and q in this analysis and 

it must be kept in mind that the resulting DIDF holds only for irrational fre- 

quency ratios in close proximity to the chosen n.   Although a closed form 

solution can be found for the DIDF when n equals one, it is doubtful that the 

integrals of Equations (5.1) and (5.2) can be solved analytically when n is 

other than one.   It would be an important contribution if only the first 

indicated integration could be performed analytically as in the modified 
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nonlinear element method.   However, it appears that even this cannot be done 

and for this reason a double integration by some numerical technique is usually 

required.   Therefore, when a DIDF is calculated v-ith a digital computer, one 

can expect to use a relatively large amount of computer time. 

In this chapter, the results of a digital computer solution are presented 

in the form of graphs.   Nine values of n and four values of B/a are chosen. 

A table of seventeen ^'s was set up for "averaging" the DIDF and performing 

the second integration.   The Awt increrr-ents used for carrying out the first 

integration were approximately one degree.   It was found that the size of the 

A0 increments did not affect the accuracy of the final answer to the same 

extent as the size of the Aut increments.   The increment for the second 

integration was chosen as A(p = 27r/16 because of limited available computer 

time. 

Several restrictions must be kept in mind when working with the multi- 

valued nonlinear elements.   First, the nature of the nonlinear element requires 

that each succeeding cut increment in the integration routine be larger than the 

previous one;  that is, wt must always increase (decrease).   Some integra- 

tion routines are thus not suited for integrating multivalued functions.   Second, 

a different answer is obtained for any one particular integration depending 

upon the assumed initial output state of the nonlinear element when the integra- 

tion limits are 0 to 27r.   This is apparent even in sinusoidal DF analysis where 

the correct procedure is obvious.   The correct procedure in the DIDF case 

required finding the angle wtj (0 s wtj s 2ir) where the first "switch," if 

any, occurred at the nonlinear element output (Figure 5.2).   The integration 
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•H 

Figure 5.2.   Composite Input Signal for Defining Switching Point 

interval in this case was wt = utj, to 2IT + a;tj.   There are certain values of 

A, B, and $ for which utj cannot be found and the integral is zero.   The pro- 

gram was also run with the integration limits wt = 0 to wt = 2-n, where the 

hysteretic relay output was set to -M at the beginning of each integration 

cycle.   Some discrepancy was noted for the parameter ranges 1 < A +B < 2 

where n was close to one.   Otherwise both procedures gave essentially the 

same results. 

Fourier Series analysis requires that the integration limits be over an 

entire period.   Thus when n > 1, p was set to one and q was made to take on 

integer values.   When n < 1, q was set to one and p was made to take on 

integer values.   The resulting DIDF's are shown in Figures 5.3 to 5.11.   It is 

seen that the magnitude of the DIDF shows relatively little dependence on the 

frequency ratio n when n > 3.   However, the phase angle of the DIDF is 
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strongly dependent upon n, especially when B/a < 4.   It is noted that when n 

becomes sufficiently large, the DIDF of this method approaches that obtained 

with the modified nonlinear element method.   In that case the phase shift 

across the nonlinear element goes to zero for the relay with hysteresis when 

B/a ä 1.   It has been implied by previous investigations [10,40,41] that the 

modified nonlinear element is valid for multivalued nonlinear elements when 

n 2 10.   The DIDF's given in this chapter show that a more severe restriction 

is required in some cases.   For example, when B/a = 1, A/a = 1.5, and 

n = 10, the average phase shift of the DIDF is -11.4 degrees, whereas the 

modified nonlinear element method predicts that the average phase shift will 

be zero. 

The DIDF presented in this chapter in graphical form does not agree 

with the one given by Mahalanabis and Oldenburger [31] because the frequency 

ratio n does not appear in their DIDF.   Therefore, the PTDF of Mahalanabis 

and Oldenburger is adequately presented by only one graph sheet showing the 

magnitude and one graph sheet showing the phase.   The authors imply that the 

frequency of the secondary signal may be either higher or lower than the pri- 

mary component frequency.   It appears, however, that their approximate DIDF 

expression is only correct for a band limited noise secondary signal with a low 

frequency spectrum.   Their phase curves appear to compare with those given 

in this chapter when n is somewhere between 1 and 2. 
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK 

The author's literature serach of the published methods for calculating 

the DIDF revealed that the modified nonlinear element concept, first proposed 

for single valued nonlinear elements by Sommerville and Atherton [9], is 

still one of the most widely used methods.   It is especially useful when the 

secondary signal is a nonsinusoidal deterministic function.   However, its use 

in determining the DIDF for multivalued nonlinear elements is much more 

restricted than for single valued nonlinear elements. 

It appears that the inverse DIDF problem as posed in Chapter III will be 

difficult to apply in the case of a general nonlinear element.   This inverse 

DIDF problem consists of finding the waveform of a secondary signal which will 

result in a specified modified nonlinear element.   This problem was solved for 

a restricted class of nonlinear elements and it was shown that a general equa- 

tion for the DIDF of certain nonlinear elements may be found without regard to 

the waveform of the secondary signal.   In particular it was shown that only the 

coefficients in the equation are altered (not deleted) when the waveform of the 

secondary signal is changed.   If the order oi the equation describing N (e) is p 

then the order of the equation describing the modified nonlinear element is not 
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lower than p - 1, although it may be larger than p.   Thus when the order of the 

predominant terms in the equation describing N(e) is large, the secondary 

signal waveform has little effect on the appearance or characteristics of the 

modified nonlinear element.   Such examples serve to indicate that the use of 

the inverse DIDF procedure as a synthesis tool will be of limited value.   In this 

connection it was observed that a very wide range in the characteristics of the 

modified nonlinear element of the relay function [N(e) is zero order) ] could be 

affected by a change in the secondary signal waveform.   Thus the proposal of 

Oldenburger and Ikebe, in which a relay function is inserted ahead of a given 

nonlinear element in conjunction with the secondary signal of Equation (3.20) 

in this thesis, provides a versatile synthesis tool with which to change existing 

nonlinear characteristics to desirable ones. 

The modified nonlinear element and DIDF curves given in Chapter IV 

suggest that undesirable nonlinear characteristics may often be modified to 

give acceptable characteristics by the proper choice of a secondary input signal. 

These DIDF and modified nonlinear element curves should be beneficial in 

certain synthesis problems. 

The average DIDF method given in Chapter II provides an alternate 

procedure for calculating the DIDF.   This method reduces to a fairly simple 

and compact form when the nonlinear element is single valued and both 

components of the input are sine waves.   Examples 3how that in such a case the 

average DIDF method may involve less computational work than the modified 

nonlinear element method.   The average DIDF method also complements the 

modified nonlinear element method in giving physical interpretation to the DIDF, 
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although the intermediate step of the latter method is more useful. 

The literature search revealed that very few useful results have been 

published on effective procedures for calculating the DIDF for multivrlued 

nonlinear elements.   One exception is the application [16,30] of the modified 

nonlinear element method which is limited to the case when n >> 1 or its 

extension [16] which holds when n « 1.   In this thesis the incorrectness of 

some of the alternative procedures which have been proposed in previous pub- 

lications has been demonstrated.   Mahalanabis and Oldenburger [31] have 

recently published a paper in which they offer a new procedure based upon an 

"envelope" description of the dual input.   In this way, they obtain a single 

expression for the DIDF which does not include n as a parameter but which, 

they assert, holds for both n > 1 and n < 1.   It would seem to this writer that 

if the modified nonlinear element is incorrect for multivalued nonlinear 

elements, then any correct method must include the frequency ratio u in the 

analysis and final answer. 

The average DIDF method offers such a procedure.   It suffers from the 

amount of computer time required to give a complete solution and the number 

of graphs required for presentation in graph form.   The TSIDF of the relay 

with hysteresis was calculated by this method and presented in Chapter V. 

Unfortunately the order of integration cannot be reversed in the double- 

integral formulation [Equations (2.12) and (2.13) ] when N(e) is multivalued. 

However, this is in essence what is done when the modified nonlinear element 

method is incorrectly applied to multivalued nonlinear elements and results 

in the same answers.   An approximate method for solving the first or both 
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integrals by analytical means would be very helpful.   Further studies in this 

area might prove fruitful. 

Some experimentally determined DIDF's for common-multivalued type 

nonlinear elements would be of benefit to the control engineer.   For example 

in pulse width modulation (PWM) control systems incorporating a controller 

actuator which is characterized by a relay with hysteresis or saturation with 

hysteresis, it is not uncommon to have an n of 6 or 8.   However, the 

secondary signal would usually be a triangle wave in the PWM system. 

The average DIDF method may be extended to incorporate an input 

consisting of the sum of three or more sinusoidal functions.   Some useful 

approximate results might be obtained in such an investigation if one restricts 

attention to single valued nonlinear elements where the parameter n may be 

set equal to unity. 
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APPENDIX 

EXAMPLE CALCULATIONS 
OF THE 

MODIFIED NONLINEAR ELEMENT AND DIDF 

The modified nonlinear element method as e;rplained in Chapter II is 

used to find the DIDF of the absquare when the secondary signal is a triangle 

or square wave.   The average DIDF method developed in Chapter II is used to 

calculate the TSIDF.   The procedures given in the following detailed example 

were followed in deriving the DIDF's tabulated in Chapter IV.   The cases 

where the secondary signal is a sine wave are the most difficult to solve and 

the average DIDF method provides some labor savings in these cases.   The 

approximate solutions for the TSIDF of dead band, limiter, and limiter with 

dead band given in Chapter IV were found by the approximate trapezoidal 

integration rule in solving the second integral of the average DIDF method. 

A, Sine Wave Secondary Signal 

The equation describing the absquare nonlinear element is 

N(e) = e2 sgn (e)    . (A-l) 

The DIDF is found by Equations (2.29) and (2.31) which are repeated here for 

convenience. 
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.21t 

g(A, B, 0)  =- — h- ■—      • -j- j N (D sin cot) sin cot d^t 
D 

(A.2) 

where 

and 

4«/Ä 2  ^   1,2 r B^ + 2AB cos <p 

2tr 

K(A,B) = — /g(A,B,(^)d^ 

(A.3) 

(A.4) 

Substituting Equation (A.l) into Equation (A.2) gives g(A,E, 0) for the 

absquare. 

g(A,B,(P)  = 

i        B 

1    +   —   COS    d) „    TT 
A 2   f   o       -> 

— • — ID  sin  cjt dwt 
O 

D 

or 

The DIDF becomes 

8D 
g(A, B, (p)  = j^ (A + B cos 0) 

2TT 

(A. 5) 

(A. 6) 

K(A,B)  = riT f (A + B cos 0) N/A
2
 + B2 + 2AB cos 0 d0 .    (A. 7) 

The integrand is symmetrical about <p = it and is solved by separating the 

integral into two parts which are easily identified as elleptic integrals. 

K(A,B)  = TIT"/ 'vA2 + B2 + 2AB cos (p d(p 

8    -   ^ B 

Sir2 A 
/cos (p^A2 + B2 + 2ABcos0 d0        (A. 8) 

The solution of the first integral of Equation (A. 8) is found to be 
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Q1=^(A+   B)E(f.k) (A.9) 

where 

. 2\/ÄB 
k =— ^-T   . 

and Ef k, — j is the complete elliptic integral of the secoi.       ^d.   The second 

integral of Equation (A. 8) is denoted by Q2. 

8    -a   ^ I  
Q2 ='7"2-r/cos t^2 + B2

 
+ 

OTT    A 2AB cos 0 d(p (A. 11) 

or 

Q2 = irr^Ä" Sin ^ + Bz + 2AB cos 0 k 
2 1 

+ °K r sin" (p d<t>  
(A. 12) 

o   ^A2 + B2 + 2ABcos <p 

The solution of Equation (A. 12) is shown by Byrd and Friedman [38] to be 

„       8B2 / 8     \ /   1 \ Q2 =:37lr7lJilp-)f'2-k2)E(k) -2(k')2F(k)]   ,     (A.13) 

where 

(k')2 = 1 - k2    . (A. 14) 

The modulus k is given by Equation (A. 10) and Ff—-, kjis the complete 

elliptic integral of the first kind.   Equation (A. 13) may be written 

8   (A + 3)        0        o , 
Q2 =   -^2—£rJ  «A2 + B2)E -  (A  - B)2K]     , 

where, according to standard notation, 

E A E(JLt k)  = E(k) 

and 
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Adding Qj and Q2 gives the DIDF of absquare. 

K(A.B)  - -l^T1 f<7A   + B2)E -  (A - B)2K) (A. 18) 

The modified nonlinear element N^A  ,B^ is explained in Chapter II.   The 

expression for K(A  , BJ is given by the integral 

27r 

^(VB)=^-iN(Ao+Bsi^t)d^t (A. 19) 

Equation (A. 19) is separated into two parts for the absquare; i.e. , 

HAo'B) =~tl   ' (Ao +  Bsln^)2d/?t -17   ,/ (Ao + B^/'O2^   ' 
(A. 20) -01 TT+O, 

where 

sin- A^i) (A. 21) 

Evaluating Equation (A, 20) gives 

N(A  .B) =—   (2A 2 + B2)^! + 4A B cos flj - B2 sin ^ cos 9] 

(A. 22) 

The DIDF could have been found by using the modified nonlinear element of 

Equation (A. 22) as the first stage of the two-stage evaluation process 

(Chapter II).   However, the mechanics of solving the integrals are somewhat 

more involved, but the same final expressions may be worked out.   Equation 

(A. 22) simplifies to 

1 

N(Ao)B) i 
(2A 2 + B2) sin-1 Ö, + 3A B   /l - (    ° 1       ;     A    < 
.vo ' 0   \l \B/J'        0 

B 

(A2
+|B2)    ;     A B (A. 23) 
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, The input and output signals are shown in Figure A. 1.   A multiplying factor c 

may be inserted to add to the generality of the absquare. 

N(eU E 4 

sgrM 

(A0 ♦ B)' 

\ 

•»i 
U- 

2TT . e. 

Figure A-l.   Input and Output Sigials of Absquare 
for Computing Modified Nonlinear Element 

ßt 

B. Triangle Wave Secondary Signal 

The application of the modified nonlinear element concept is very 

straightforward when the secondary signal is either a triangle wave or square 

wave.   In many instances the "stabilizing" property of these secondary signals 

is not very different than that of a sine wave [32].   however, the resulting 

effective gain may be very different, as was shown in Chapter III and 
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I elsewhere [!6,33|.   The modified nonlinear element is first found as follows: 

Assume the triangle wave ai^) and the dc bias A   shown in Figure A-2. 
o 

The equation for the triangle wave secondary signal is 

-7r/2 ^  ßt s   T/2 

7r/2 s   fit 
3r 

.'A. 24) 

The integral form for the modified nonlinear element is 

r/9 

X (v^/'K-^h" 
3-/2 

- £jÄAo **&£)]'*" iA. 25) 

The last integral of Equation (A.25) is best simplified su that 

r/2 _ TT/2 

^(VB)4/(A T££öt)
:^4/ K-?»1^ 'A■26, 

N(Ao>B)=i. 
4A B 

o 'a. +  2A^iH- (?- ,\       8B2 

3^ 2 'T 

The angle ni is found from the relation 

crf'Tj)   = A 

(A. 27) 

(A. 28) 

or 

<—>at 
B (A-29) 

Substituting for o^ in E 'iation (A,27) results in the following relationships: 

I ' 
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H(.) A o 
kl(A0 ♦ B) 

A 
0 

C 

•v 1 

0 

i 

B 

> 
1 
l 

n +  «- 

i 

2^-6^ 

P* ■ 

2Ti.e1   p* 

Figure A-2.   Input and Output Signals of Absquare Nonlinear Element 
for Determining the Modified Nonlinear Element 

N(AO.B) 

A 3 

A B +~-   ;        A    ^ B 
o 3B o 

9      B' A 2 +-=-    ;        A    >  B 
o        2 o 

(A.30) 

The DIDF is found with the signal A sin cot as the primary component of the 

input to the modified nonlinear element NfA  , B j (Figure A-3).   It should be 

noted that Equation (A. 30) would have to be modified slightly to hold for 
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N(A .B) i 
A 2 2 « = A/ +  1/3 B 

A A^ 
N = A0B ♦ 1/3 ^ 

A 

A Sin wt 

Figure A-3.   Modified Nonlinear Element for Absquare 
with Triangle Wave Secondary Signal, 

Shown with Primary Input Signal 

negative values of A .   This will hold true for most of the modified nonlinear 

elements to be derived and will be neglected hereafter,. 

The DIDF is found by using Equation (2.5) which is restated here. 

27r 
K 

1   c   " 
(A,B)  = —J   N(A sin wt, B) sin wt dwt    . (A.31) 

Therefore, 

Yl 

• 

i 

■ 1 

i 
j 

K(A,B)  = -T / (AB sin wt + 0 

o   ^ 

1 A3 sin3 wt 
B -) 

sin wt dwt 
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+ ~T- j   {A   sin2 wt - — B') sin wt d^t 

Yl 

K(A,B)   = — B (2^., - 2 sin ■>, cos ■), J 

A"/-: i      2 sin •) ] cos y,      sin3 •) j cos >-] 
"5 \1 4 3 

* AN cos:.,   -TT^OS  Yil   -——cos-} 

(A. 33) 

where 

, i      sin-1 sat (— 

Substituting this value for-;.] into Equation (A. 33) gives 

I1  F/OT,       A2\   .    , /B\ /
/]       B /B2 13A 

\ ** i ■^-'/ 

I B 
4B 

A  s B 

(A. 34) 

A >  B 

(A.35) 

C. Square Wave Secondary Signal 

In this case yi is always zero (Figure A-l).   The square wüve signal is 

shown in Figure A-4. 

The modified nonlinear element is described by the relation 

2- 

*(VB) = ^ /(Ao +  ^ + Sgn (Ao ' B) 27 / (Ao - f^ 
(A.36) 

Evaluating these integrals shows the modified nonlinear element to be 

/ 

N(Ao,B) ={ 

2BA 

A 2 +  B2 

A    < B 
o 

A    >  B 
o 

(A. 37) 
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A + B o 

2TT pt 

Figure A-4.   Bias and Square Wave Secondary Signal 

Again the DIDF is found by assuming the signal A sin ojt as the input to 

X/A  , B) and determining the fundamental output (Figure A-3) 

4    V , 
K(A,B}   = — j    2AB sin   w* ^t 

K 

7r/2 

—7 /     (A2 sin2 cot + B ) sin wt d^t    , 
TT A    ^ rA 

Tl (A. 38) 

where again 

yj = sin in"lsat(l) (A. 39! 

The DIDF is found to be 

K(A,B)   = — 

{A. 40) 

Separating the last equation into two parts results in the following simplified 

expressions: 

K(A,B)  - 1 
(1)4 B^ f1 

\A / 
B sin"' I -r )     -   |2A + — I   /1   - f T I       ;     B < A 

2B   ;     B > ^     . (A. 41) 

This shows the linear range mentioned in Chapter III [Equation (3.31) ]. 

/ 
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